
Computer-Based
Instruments

NI-SWITCH
Software User Manual

NI-SWITCH Software User Manual

February 2001 Edition
Part Number 370154B-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 794 0100

Worldwide Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011,
Canada (Calgary) 403 274 9391, Canada (Ottawa) 613 233 5949, Canada (Québec) 514 694 8521,
China (Shanghai) 021 6555 7838, China (ShenZhen) 0755 3904939, Denmark 45 76 26 00,
Finland 09 725 725 11, France 01 48 14 24 24, Germany 089 741 31 30, Greece 30 1 42 96 427,
Hong Kong 2645 3186, India 91805275406, Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970,
Korea 02 596 7456, Mexico 5 280 7625, Netherlands 0348 433466, New Zealand 09 914 0488,
Norway 32 27 73 00, Poland 0 22 528 94 06, Portugal 351 1 726 9011, Singapore 2265886, Spain 91 640 0085,
Sweden 08 587 895 00, Switzerland 056 200 51 51, Taiwan 02 2528 7227, United Kingdom 01635 523545

For further support information, see the Technical Support Resources appendix. To comment on the
documentation, send e-mail to techpubs@ni.com

© Copyright 1998, 2001 National Instruments Corporation. All rights reserved.

Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF

NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR

DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY

THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
CVI™, LabVIEW™, National Instruments™, ni.com™, PXI™, and SCXI™ are trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

Conventions

The following conventions are used in this manual:

♦ The ♦ symbol indicates that the following text applies only to a specific
product, a specific operating system, or a specific software version.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to
avoid injury, data loss, or a system crash.

This icon denotes a warning, which advises you of precautions to take to
avoid being electrically shocked.

bold Bold text denotes items that you must select or click on in the software,
such as menu items and dialog box options. Bold text also denotes
parameter names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames and extensions. In addition, this manual uses this font
as a naming convention to jointly refer to LabVIEW VIs and C-language
function calls. For example, Connect, when shown with this font, refers
both to the LabVIEW VI niSwitch Connect Channels and to the C function
niSwitch_Connect. Refer to Appendix C, Common Names Table, for
more information.

monospace bold Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

© National Instruments Corporation v NI-SWITCH Software User Manual

Contents

Chapter 1
Introduction

Background..1-2
VXIplug&play...1-2
IVI..1-2

Getting Started ...1-2
Installing the Software...1-3

Chapter 2
API Overview

Introduction..2-1
Switch Overview..2-2

Simple Multiplexer..2-2
Matrix ..2-3
General-Purpose Switch Module...2-3

Using a Session for Communication ...2-4
Using Attributes ...2-6

Accessing Attributes in LabVIEW, C, and Visual Basic2-6
Using the C Attributes for Querying and Controlling2-7

Using Read-Only State Attributes to Query the Switch Device2-7
Using Operation Attributes to Control Basic Operation

of the Switch ..2-8
Using Operations in LabVIEW, C, and Visual Basic..2-8

Overview of VXIplug&play Required Operations..2-9
Initialize and Close..2-9
Reset..2-9
Self Test ..2-9
Error Query and Error Message ..2-9
Revision Query ...2-9

Chapter 3
Introductory Programming Examples

Basic Startup ..3-2
Example 3-1. Initialization ..3-2

Discussion ...3-3
Open/Close Switch ..3-3

Example 3-2. General-Purpose Switches ..3-4
Discussion ...3-5

Contents

NI-SWITCH Software User Manual vi ni.com

Manual Scanning ... 3-6
Example 3-3. Multiplexer ... 3-6

Discussion... 3-7
Matrix Operations.. 3-8

Example 3-4. Matrix ... 3-8
Discussion... 3-9

Basic Scan ... 3-9
Example 3-5. Scanning ... 3-10

Discussion... 3-11

Chapter 4
Manually Controlling Switches

Connect and Disconnect .. 4-1
General-Purpose Switch Topologies... 4-1
Multiplexers, Scanners, and Trees .. 4-2
Matrixes .. 4-3

Reset .. 4-4
Analog Bus .. 4-4

Chapter 5
Scanning

Overview ... 5-1
Preparing a Scan List String .. 5-2

Using Basic Scan List Syntax ... 5-2
Connect Action ... 5-2
Disconnect Action .. 5-2
Switch Action ... 5-3
Connection Separator ... 5-3
Sequence Separator... 5-3
Action Separator ... 5-4
Scan List Entry ... 5-4
Scan List ... 5-5

Using Advanced Scan List Syntax.. 5-6
Scan Mode .. 5-6
Connection Range... 5-7
Repeat ... 5-8
Scanner Advanced .. 5-9
Wait for Trigger.. 5-11
Break... 5-13

Parsed Scan List .. 5-13
Configuring the Triggering Options.. 5-14
Changing the Polarity of the Input Trigger and Scan Advanced................................... 5-15

Contents

© National Instruments Corporation vii NI-SWITCH Software User Manual

Using Scan Delay...5-15
Combining Scanning and Routing Functions ..5-16
Scan Operations ...5-16

Example 5-2. Scan Operations and Programming Example5-16

Chapter 6
Using NI-SWITCH with SCXI

Switch Topologies for SCXI-1127 and SCXI-1128 ..6-1
Scanner Mode..6-2

Single Channel ..6-3
Multiple Sequential Channels ...6-3
Multiple Random Channels ..6-4
Cold-Junction Temperature Sensor Channel6-4
Analog Bus Configuration ..6-5
Route Functions ..6-6

Matrix Mode..6-7
Independent Mode ...6-8
Triggering ..6-9

Trigger Input ...6-9
Scan Advanced..6-10

Switch Topologies for the SCXI-1160, SCXI-1161, and SCXI-1163R6-12
SCXI-1160...6-12
SCXI-1161...6-13
SCXI-1163R..6-13

Switch Topologies for the SCXI-1190, SCXI-1191, and SCXI-1192...........................6-14
SCXI-1190, SCXI-1191 ..6-14
SCXI-1192...6-16

Switch Topologies for the SCXI-1129 ..6-17
Routing Signals ...6-18
Scanning a List of Channels ..6-18
Analog Bus Configuration for Scanning ...6-18
Manual Control of Switches..6-19

Scanning a Non-Cabled SCXI Module..6-19

Appendix A
Microsoft Visual Basic Examples

Appendix B
Scanning Multiple Devices

Contents

NI-SWITCH Software User Manual viii ni.com

Appendix C
Common Names Table

Appendix D
Technical Support Resources

Glossary

Index

© National Instruments Corporation 1-1 NI-SWITCH Software User Manual

1
Introduction

This manual describes how you can use the NI-SWITCH driver to program
your National Instruments switch device.

Use this manual sequentially to learn how to set up a system to use
National Instruments switching hardware through the NI-SWITCH driver.
Make sure you have all the components described in the Getting Started
section.

Use your switch device user manual to learn about the electrical and
mechanical aspects and features of your National Instruments switch
device.

Note Read the Readme.htm file that was installed with the instrument driver for
last-minute changes and updates.

In addition to this manual and your switch device user manual, you can find
useful information in the online help files. These electronic documents
(.hlp files) give detailed information on the operations and attributes of
NI-SWITCH. Refer to the Where to Start document that came with your
hardware for instructions about setting up your system.

For the latest versions of drivers, manuals, and example programs,
visit ni.com/instruments for free downloads.

Note This manual uses a naming convention to jointly refer to LabVIEW VIs and
C-language function calls. For example, Connect, when shown with this font,
refers both to the LabVIEW VI niSwitch Connect Channels and to the C function
niSwitch_Connect. Refer to Appendix C, Common Names Table, for more information.

Chapter 1 Introduction

NI-SWITCH Software User Manual 1-2 ni.com

Background
NI-SWITCH is designed to be an easy-to-use software interface for
National Instrument switch products. This driver is based on two industry
standards for instrument drivers—VXIplug&play and Interchangeable
Virtual Instruments (IVI).

VXIplug&play
The VXIplug&play Systems Alliance was formed to solve some of the
remaining difficulties in integrating a VXI system. One of the most
important components they addressed was the instrument driver. The
VXIplug&play Alliance created a standard for instrument drivers and
required that any VXI device must have such an instrument driver to be
VXIplug&play compliant. The NI-SWITCH instrument driver follows this
standard by providing an instrument driver based on the VXIplug&play
standards.

IVI
In 1997, National Instruments promoted the creation of the IVI Foundation,
an open consortium of companies chartered with the purpose of defining
software standards for Interchangeable Virtual Instruments (IVI). As a
result, the IVI Foundation (www.ivifoundation.org) has introduced
an instrument driver model that is not only VXIplug&play compliant
but also extends the functionality to include many new features, such as
state-caching and simulation modes, which users had requested. This
architecture uses a support driver, known as the IVI Engine, to handle many
of the complex features. The NI-SWITCH instrument driver is fully
IVI-compliant.

Getting Started
You need the following items:

❑ Appropriate National Instruments switching hardware, such as
the NI 25XX series for PXI, SCXI-1127/1128, SCXI-1129, or
SCXI-1160/1161/1163R. Refer to the Readme.htm file for a complete
list of devices you can use with the version of the driver you have.

❑ NI-SWITCH instrument driver software

Chapter 1 Introduction

© National Instruments Corporation 1-3 NI-SWITCH Software User Manual

Installing the Software
You can control your SCXI switch module programmatically in an
application development environment (ADE) using NI-SWITCH. The
supported ADEs include LabVIEW, Measurement Studio, Visual Basic,
and C or C++ environments. To install NI-SWITCH, complete the
following:

1. Install your ADE if you have not done so already.

2. Insert your NI-SWITCH software CD into your CD-ROM drive. The
installation window appears automatically.

Note If the installation window does not appear, double-click the My Computer icon on
your PC desktop. Find the CD drive, and double-click it. In the CD directory, double-click
install.exe.

The NI-SWITCH and NI-DMM installation window offers three
choices:

• Install NI-DMM—Choose this selection if you want to install
only the software for the DMM.

• Install NI-SWITCH—Choose this selection if you want to install
only the software for the switches.

• Install NI-SWITCH and NI-DMM—Choose this selection if
you want to install the software for both the DMM and the
switches.

3. Click the Install NI-SWITCH option.

4. To install the instrument driver, Soft Front Panel(s), and ADE
examples, choose Programmatic and Interactive Support. To install
only the Soft Front Panel(s), choose Interactive Support Only.

Note The Interactive Support Only choice does not allow you to program the instrument
with any programming languages.

5. For advanced users only—when installing NI-SWITCH, notice the
Development Environments panel.

• If you click the Advanced button on this panel, you can custom
install National Instruments drivers such as NI-DAQ, NI-IVI,
and NI-VISA.

• If you do not want to install certain drivers, click Advanced and
uncheck the driver(s) you do not want installed.

Chapter 1 Introduction

NI-SWITCH Software User Manual 1-4 ni.com

If a driver is already unchecked, your computer has the same driver or
a newer version of the driver already installed.

Note If a newer version of a driver is present on your PC, the installer does not overwrite
the driver.

After completing the software installation, turn off your computer. Refer to
your hardware user manual for instructions on installing your hardware.

© National Instruments Corporation 2-1 NI-SWITCH Software User Manual

2
API Overview

This chapter contains an overview of the NI-SWITCH Application
Programming Interface (API), defines special terms you need to
understand, and introduces the various operations defined by the
VXIplug&play specifications on instrument drivers. The operations
specified by these documents are standard across all VXIplug&play
instrument drivers. In addition, this chapter presents information on
other operations unique to the NI-SWITCH driver and gives an
overview of the main groups of attributes.

Refer to the online help for a complete list of the operations and their
parameters.

Introduction
The NI-SWITCH API is designed to be consistent with VXIplug&play,
VISA, and IVI technology. Due to advances in these technologies, several
object-oriented concepts exist in the API. When you consider a description
of an object, such as a car, computer, or switch device, it has three groups
of information associated with it, as described below:

• The first group is attributes. Attributes give state information about the
object. For example, attributes of a car include its color, the number of
doors, and whether or not it is currently running. For a switch device,
attributes include the number of channels, the bandwidth of the device,
and whether or not the switches on the device are debounced. In
addition, attributes can also control features of the switch such as
controlling which trigger lines the switch device should use.

• The second group is operations. Operations are often called the verbs
of the object because they describe what the object can do. For
example, a car’s operations include accelerating, braking, and turning.
For a switch device, operations include opening or closing a switch.

• The third group is sessions, or handles. Sessions are the unique
identifiers of the object and are used to communicate with the object.
They are similar to items such as file I/O handles. Sessions, attributes,
and operations are described in more detail in the following sections.

Chapter 2 API Overview

NI-SWITCH Software User Manual 2-2 ni.com

Note You can use a switch device to route signals for measurements or for sourcing.
You can also use it to control a circuit by making or breaking an electrical connection.
However, throughout this manual, when describing switching applications, we commonly
refer to the switch device being connected to a measurement device and the switch device
passing signals through to the measurement device. This reference is not meant to restrict
the use of the switch device, but rather to simplify the documentation. At almost any point
where we discuss a measurement device, you can apply the same information to the other
possible applications of the switch device.

Switch Overview
A switch module consists of a series of switches, either interconnected as
in the case of a matrix or multiplexer, or independent as in the case of the
general-purpose switch. However, from your point of view, the switch is no
more than a way to connect signal paths. If you adapt this point of view to
the switch module, it is no more than a black box with a variety of signal
connections, or channels. The NI-SWITCH driver was designed from this
point of view.

Simple Multiplexer
Consider the case of a simple multiplexer. This switch module consists of
a variety of channels that are multiplexed to a single channel, called the
common. Therefore, if you want the switch module to route the signal on
the input channel—although the definitions of input and output can be
reversed on most switch modules—to the common, you program the driver
to connect the two channels as shown in Figure 2-1.

Figure 2-1. Connect Channel to Common Block Diagram

status = niSwitch_Connect(instr, "com0", "ch3");

Chapter 2 API Overview

© National Instruments Corporation 2-3 NI-SWITCH Software User Manual

Matrix
In the case of a matrix, the terms channel and common are typically
replaced with the terms row and column. However, the driver still considers
them as channels. Notice the similarity between Figure 2-1 and Figure 2-2,
which illustrates how to connect row 5 to column 3.

Figure 2-2. Connect Row with Column Block Diagram

status = niSwitch_Connect(instr, "r5", "c3");

General-Purpose Switch Module
Finally, in the case of a general-purpose switch module, the independent
switch can be considered a multiplexer in its own right. For example, you
can consider a Form A switch as a 1 × 1 multiplexer, and a 1-Form C switch
as a 2 × 1 multiplexer. In the case of a 1-Form C switch, its channels are
often called COM (common), NC (normally closed), and NO (normally
open). The connect operation is shown in Figure 2-3.

Figure 2-3. Connecting a General-Purpose Switch Module Block Diagram

status = niSwitch_Connect(instr, "com0", "no0");

Chapter 2 API Overview

NI-SWITCH Software User Manual 2-4 ni.com

Using a Session for Communication
NI-SWITCH is a scalable driver, which means it can communicate with
any of the National Instruments switches. Therefore, when you want to use
the driver, you must be able to uniquely identify the appropriate hardware.
You do this through Initialize, where you pass in a unique descriptor
of the hardware. This descriptor gives the driver the physical address of the
hardware. The driver then returns a special handle, called a session, to you.
Whenever you want to perform any action on this hardware, you pass the
session back to the driver. The session is the central component to
communicating with the driver and hardware.

Figure 2-4. Initialize Block Diagram

status = niSwitch_init("PXI0::16::INSTR", VI_TRUE,

VI_TRUE, &instr);

This code opens communication with a PXI switch device at address 16.
The session is returned in the last parameter, in this case in the variable
instr.

As an alternative to Initialize, consider a similar
operation—Initialize With Options. This operation initializes the
driver into a state you specify using options you pass into the operation. For
example, you can operate NI-SWITCH in simulation mode, in which you
can run programs without the switch hardware being connected to the
computer. To open a session to the simulation driver, you would use
Initialize With Options as shown in Figure 2-5.

Figure 2-5. Initialize With Options Block Diagram

Chapter 2 API Overview

© National Instruments Corporation 2-5 NI-SWITCH Software User Manual

status = niSwitch_InitWithOptions("PXI::10::INSTR",

VI_TRUE, VI_TRUE, "Simulate=1, DriverSetup=PXI-2501

2-Wire Mux", &instr);

To communicate with the hardware, use this session as the first parameter
of every operation from then on, as shown in Figure 2-6.

Figure 2-6. Use the Instrument Handle in Your Application Block Diagram

status = niSwitch_Connect(instr, "com0", "ch0");

This operation connects channel 0 to the common on the hardware to which
instr points. When the communication is complete, close the session by
using Close.

Note You can have only one session open to a unique piece of hardware at a time.

Due to the advanced features of IVI, such as state-caching, you should not
have multiple sessions to—or multiple views of—the same hardware.
Therefore, if your application is multi-threaded, each thread shares the
same session. For protection between the threads, NI-SWITCH includes a
set of lock operations for use in Visual Basic and C/C++. When locking is
required in LabVIEW, use LabVIEW-specific methods.

Chapter 2 API Overview

NI-SWITCH Software User Manual 2-6 ni.com

Using Attributes
You can use attributes to get information about the state of the device, or
to set the state of the device. For example, by retrieving an attribute from
the driver, you can determine whether the switches on the device have
debounced, or you can set the source of a trigger. Some NI-SWITCH
helper operations even let you use attributes without accessing them
directly. For example, Is Debounced also tells you whether or not the
switches on the device have settled, and Configure Scan Trigger sets
up the necessary trigger parameters in a single call.

Accessing Attributes in LabVIEW, C, and Visual Basic
Accessing attributes in LabVIEW works slightly differently than for C
and Visual Basic. LabVIEW uses a feature known as the property node.
A LabVIEW programmer can use the property node to get and set multiple
attributes at the same time. You can access the attributes in LabVIEW only
through the property nodes, which display the list of possible attributes you
can access.

C and Visual Basic users use special functions such as
niSwitch_GetAttributeViInt32() and
niSwitch_SetAttributeViBoolean(). In these languages,
the attributes themselves are identified by their names, which always
start with niSWITCH_ATTR_.

Figures 2-7 and 2-8 show how to get or set attributes in LabVIEW and C:

Figure 2-7. Get Active Channel Attribute Value Block Diagram

status = niSwitch_GetAttributeViInt32(instr, "ch0",

NISWITCH_ATTR_SETTLING_TIME, &attrVal);

Chapter 2 API Overview

© National Instruments Corporation 2-7 NI-SWITCH Software User Manual

Figure 2-8. Set Trigger Input Attribute Block Diagram

status = niSwitch_SetAttributeViInt32(instr, "",

NISWITCH_ATTR_TRIG_INPUT, NISWITCH_VAL_TTL0);

These two operations also point out two other special features of the
attribute operations. First, notice that the C operations take the data type of
the attribute as part of the name. Therefore, each data type has a unique
function (Boolean, integer, and so on).

The next thing to notice about the operations—for both LabVIEW and
C—is the channel parameter. NI-SWITCH attributes can be either global
to the entire device, or local to each channel of the device. Therefore, you
must indicate which channel, if necessary, you want to communicate with.

In LabVIEW, this is done by setting the Active Channel attribute. All
channel-based attributes below it are then directed to that channel.

Using the C Attributes for Querying and Controlling
The NI-SWITCH C Reference Help fully describes all of the attributes for
the NI-SWITCH driver. However, review this section for a general
overview of the main groups so that you can better understand what
information and control is available through the attributes.

Using Read-Only State Attributes to Query the Switch
Device
The first group of attributes is the read-only state attributes. You can use
these attributes to query the switch device for basic information about the
switch. This makes it possible for a program to be scalable across different
devices because the program can configure itself depending on the actual
hardware present (such as number of channels).

niSWITCH Trigger Source to IVI Constant.vi

Chapter 2 API Overview

NI-SWITCH Software User Manual 2-8 ni.com

The following attributes are global across all channels:

• Number of Rows

• Number of Columns

• Wiring Mode

The other attributes in this group contain the specifications for the switches,
such as the Bandwidth attribute and the Maximum AC Voltage attribute.
Notice that this information is specific to the switch mentioned in the
channel name of the Get and Set operations. Therefore, getting the
bandwidth value for the first switch in a multiplexer does not tell you the
bandwidth through the device, but only through that specific switch.

Using Operation Attributes to Control Basic
Operation of the Switch
Another group of attributes controls basic operation of the switch device.
For example, the Continuous Scan attribute controls whether the scanning
continuously loops through the scan list, or stops at the end of the scan list.
Other examples for the scan list are the Scan List attribute, which contains
the actual scan list, and the Scan mode attribute, which controls the
Break Before Make and Break After Make functionality. In this same
group are several attributes that control triggering. These attributes, such as
the Trigger Input attribute and the Scan Advanced Output attribute, are
described more thoroughly in Chapter 5, Scanning.

Using Operations in LabVIEW, C, and Visual Basic
An operation is another name for a VI in LabVIEW, or a function in C or
Visual Basic. These operations give you full access to NI-SWITCH,
including access to attributes (through the Get and Set operations) for C and
Visual Basic users. Remember, in LabVIEW, you use property nodes to
access attributes.

Consult the NI-SWITCH C Reverence Help or the NI-SWITCH VI
Reference Help for more information on NI-SWITCH operations.

Chapter 2 API Overview

© National Instruments Corporation 2-9 NI-SWITCH Software User Manual

Overview of VXIplug&play Required Operations
Some operations are required for VXIplug&play.

Initialize and Close
As described earlier in this chapter, the central component to
communicating with the driver and hardware is the session. Use
Initialize and Close in your program to create and destroy the session,
respectively. In addition, Initialize can require a verification that the
address actually corresponds to the correct hardware, and Initialize can
perform a complete reset on the device.

Reset
In Initialize, the program can order a device reset. However, you can
achieve the same functionality through Reset. In both cases, the reset
causes the device to return to its powered-on state.

Remember that the definition of this state can vary between latching and
non-latching relay devices. For the non-latching devices, the power-on state
is always the same, with the relays returning to their normally closed (NC)
position. However, latching relays can maintain their state between power
cycles, depending on the design of the device. However, all latching
devices, when reset, return to their reset position.

Self Test
Self Test is designed to verify that the device is operational. The level
of this verification depends on what information the driver can obtain about
the device. In general, NI-SWITCH can verify that the device is responding
and can access the registers of the hardware.

Error Query and Error Message
All operations return status information that indicates whether or not the
operation executed successfully. However, you can use Error Query to
retrieve the status code returned by the last operation called. Error
Message translates an NI-SWITCH status code into a text message,
which can be displayed via a pop-up window.

Revision Query
Revision Query returns the revision of the instrument driver, in this case
the revision of NI-SWITCH, as well as the firmware revision.

© National Instruments Corporation 3-1 NI-SWITCH Software User Manual

3
Introductory Programming
Examples

This chapter contains examples that use NI-SWITCH to explore some of
the basic functionality of your switch hardware. The purpose of these
examples is to introduce the programming concepts and to familiarize you
with the instrument driver. Subsequent chapters describe these concepts in
more detail.

These examples use LabVIEW and C source code, which you can use in the
National Instruments LabVIEW, LabWindows/CVI™, and Microsoft Visual
C++ programming environments. The NI-SWITCH driver also works with
Microsoft Visual Basic for Windows 2000/NT/Me/9x programming
environments. You can find equivalent examples for this environment in
Appendix A, Microsoft Visual Basic Examples.

The program shown in Example 3-1 is very straightforward. Later
examples in this chapter repeat its basic structure as additional features are
introduced.

♦ C examples—Any code that is different from Example 3-1 in the
subsequent examples appears in bold text.

Chapter 3 Introductory Programming Examples

NI-SWITCH Software User Manual 3-2 ni.com

Basic Startup
NI-SWITCH uses standard initialization and close routines at the
beginning and end of the program. Example 3-1 shows how to get a handle
to the instrument and retrieve information about the state of the hardware.

Example 3-1. Initialization

Figure 3-1. Initialize Example Block Diagram

#include "niswitch.h"

int main (void)

{

ViSession SWITCHinstr; /* Communication Channel */

ViStatus status; /* For checking errors */

ViChar firmRev[256]; /* Strings for revision info */

ViChar driverRev[256];

/* Begin by opening a communication channel to the instrument */

status = niSwitch_init("PXI0::16::INSTR", VI_TRUE, VI_TRUE,&SWITCHinstr);

if (status < VI_SUCCESS) {

/* Error Initializing Interface...exiting */

return -1;

}

/* NOTE: For simplicity, we will not show any other error checking. */

/* Get the revision of the driver */

status = niSwitch_revision_query(SWITCHinstr, driverRev, firmRev);

/* Close communication channel */

status = niSwitch_close(SWITCHinstr);

return 0;

}

Chapter 3 Introductory Programming Examples

© National Instruments Corporation 3-3 NI-SWITCH Software User Manual

Discussion
Example 3-1 breaks down into the following steps:

1. Open a communication channel to the device by using Initialize.
You specify the address of the device you want to talk to through
a VISA-style resource string. To use an analogy of telephone
communication, this step compares to dialing a phone number.
The operation places the call and connects you. The variable
returned—SWITCHinstr—is a session, or communication channel.
This variable represents the connection to the other person on the
phone. In this case, it is the connection to the actual hardware.

Note This operation is taken directly from the VXIplug&play specifications.

Following the address string are the ID Query and Reset, which are
both Boolean values. If you pass True to ID Query, the device verifies
that the hardware at the specified address is of the correct type (where
type is defined by the instrument driver—in this case, a National
Instruments switch device).

2. Now that you have successfully established a communication channel,
you are ready to perform some action. In this example, you query the
driver to check the revision of the driver.

3. At this point, you are done with this example. To finish the
communication, you need to close the session. For this purpose,
you use close.

Open/Close Switch
NI-SWITCH takes responsibility for which physical switch to open
or close, so you can focus your attention on connecting signals. In other
words, the operations take the two signal points (or channels) that you want
to connect, rather than the name of a physical switch. As a result, you can
not only control a simple switch device but also handle situations where
you need multiple switches to connect different channels—such as
connecting two columns in a matrix.

Example 3-2 shows how to connect channels on a switch device. For this
example, assume you have a general-purpose relay device such as the
SCXI-1160 or SCXI-1161. Because each switch is independent of the
other, you can open or close it independently of any other switch. Also,
the example assumes a Form A switch, which has two channels: an input
(ch for channel) and an output (com for the common).

Chapter 3 Introductory Programming Examples

NI-SWITCH Software User Manual 3-4 ni.com

Figure 3-2 illustrates Form A, B, and C switches.

Figure 3-2. Form A, B, and C Switches

Example 3-2. General-Purpose Switches

Figure 3-3. General-Purpose Switches Block Diagram

Normally Open Contacts

Normally Closed Contacts

Changeover Contacts

a. Form A Switch

b. Form B Switch

c. Form C Switch

Chapter 3 Introductory Programming Examples

© National Instruments Corporation 3-5 NI-SWITCH Software User Manual

Note C code Examples 3-2 through 3-5 use bold text to distinguish lines of code that
are different from Example 3-1.

#include "niswitch.h"

int main (void)

{

ViSession SWITCHinstr; /* Communication Channel */

ViStatus status; /* For checking errors */

/* Begin by opening a communication channel to the instrument */

status = niSwitch_init("PXI0::16::INSTR", VI_TRUE, VI_TRUE,&SWITCHinstr);

if (status < VI_SUCCESS) {

/* Error Initializing Interface...exiting */

return -1;

}

/* NOTE: For simplicity, we will not show any other error checking. */

/* Disconnect Channel 0 from the common (open the switch) */

status = niSwitch_Disconnect(SWITCHinstr, "com0", "ch0");

/* Connect Channel 16 to the common (close the switch) */

status = niSwitch_Connect(SWITCHinstr, "com16", "ch16");

/* Close communication channel */

status = niSwitch_close(SWITCHinstr);

return 0;

}

Discussion
Example 3-2 breaks down into the following parts:

• The program begins and ends with the same steps as described in
Example 3-1. Refer to that example for more information on parts not
in bold.

• The first command is Disconnect. This operation tells the driver to
disconnect the signal connection from the ch0 channel to the com0
channel. In the case of the general-purpose switch, this operation
merely opens switch 0. There is no significance to which switch is
connected to channel 1 or channel 2 input as they are interchangeable.

• The second command is Connect, which connects the channels of
com16 and ch16. Again, this operation is basically closing switch 16
for the general-purpose switch.

Chapter 3 Introductory Programming Examples

NI-SWITCH Software User Manual 3-6 ni.com

Manual Scanning
Example 3-3 shows how to use the instrument driver to control a
multiplexer. In Figure 3-4, notice the part of the VI that is marked
“Take measurement device, and you need to program it.

Caution Be sure to control the multiplexer so that it measures only one channel at a time,
unless you are switching large inductive loads. Failure to do so could result in two of the
channels being short-circuited together.

Example 3-3. Multiplexer

Figure 3-4. Multiplexer Control Block Diagram

#include "niswitch.h"

int main (void)

{

ViSession SWITCHinstr;/* Communication Channel */

ViStatus status;/* For checking errors */

/* Begin by opening a communication channel to the instrument */

status = niSwitch_init("PXI0::16::INSTR", VI_TRUE, VI_TRUE,&SWITCHinstr);

if (status < VI_SUCCESS) {

/* Error Initializing Interface...exiting */

return -1;

}

/* NOTE: For simplicity, we will not show any other error checking. */

/* Close switch #0 */

status = niSwitch_Connect(SWITCHinstr, "com0", "ch0");

status = niSwitch_WaitForDebounce(SWITCHinstr, 1000);

/* INSERT CODE TO MAKE READING */

Chapter 3 Introductory Programming Examples

© National Instruments Corporation 3-7 NI-SWITCH Software User Manual

/* Open switch #0 */

status = niSwitch_Disconnect(SWITCHinstr, "com0", "ch0");

/* Close switch #1 */

status = niSwitch_Connect(SWITCHinstr, "com0", "ch1");

status = niSwitch_WaitForDebounce(SWITCHinstr, 1000);

/* INSERT CODE TO MAKE READING */

/* Close communication channel */

status = niSwitch_close(SWITCHinstr);

return 0;

}

Discussion
Example 3-3 breaks down into the following parts:

• The program begins and ends with the same steps as described in
Example 3-1. Refer to that example for more information on steps
not in bold.

• The first command is Connect. As described in Example 3-2, this
operation connects the first channel to the output (com) of the
multiplexer. Before you do anything else, you should wait for the
switch to settle (debounce) before taking a reading. To do this, call the
Wait For Debounce operation. In this example, the wait operation
takes 1000 ms (1 s) as its timeout parameter. Notice that this is the
default value for LabVIEW, so it is not wired.

• Next, the measurement device takes a reading from the output of the
multiplexer.

• After making the measurement, use Disconnect to break the
connection to channel 0 and Connect to make the new connection to
channel 1. Notice, however, that the disconnect operation was not
followed by Wait For Debounce. Opening channel 0 before closing
channel 1 ensures that the two channels do not short-circuit together,
as long as they are on the same device. However, since your concern is
only that the device settles after channel 0 opens and channel 1 closes,
you do not need to spend time waiting for channel 0 to settle.
Therefore, you open channel 0 and then immediately close channel 1.
In electromagnetic relays, settling times often are measured in several
milliseconds. By not waiting for debounce during the open stage, you
can significantly reduce the time it takes to perform a scan.

Chapter 3 Introductory Programming Examples

NI-SWITCH Software User Manual 3-8 ni.com

Warning If you are using multiple models of switch devices wired together, remember to
wait for debounce when opening the channels. If you do not explicitly wait for debounce,
differences in the switch times may cause electrical short-circuits.

• Now you can take another measurement, this time measuring the signal
on channel 1. This cycle can continue indefinitely.

Matrix Operations
The last example under manual control of the switch is the matrix.
NI-SWITCH uses special channel strings for the matrix, but the general
operation is the same because NI-SWITCH focuses on creating
connections rather than opening and closing switches.

Example 3-4. Matrix

Figure 3-5. Matrix Mode Control Block Diagram

#include "niswitch.h"

int main (void)

{

ViSession SWITCHinstr; /* Communication Channel */

ViStatus status; /* For checking errors */

/* Begin by opening a communication channel to the instrument */

status = niSwitch_init("PXI0::16::INSTR", VI_TRUE, VI_TRUE,&SWITCHinstr);

if (status < VI_SUCCESS) {

/* Error Initializing Interface...exiting */

return -1;

}

/* NOTE: For simplicity, we will not show any other error checking. */

/* Connect the Matrix Point (row=0, col=0) */

status = niSwitch_Connect(SWITCHinstr, "r0", "c0");

/* Connect the Matrix Point (row=3, col=4) */

Chapter 3 Introductory Programming Examples

© National Instruments Corporation 3-9 NI-SWITCH Software User Manual

status = niSwitch_Connect(SWITCHinstr, "r3", "c4");

/* Disconnect the Matrix Point (row=0, col=0) */

status = niSwitch_Disconnect(SWITCHinstr, "r0", "c0");

/* Close communication channel */

status = niSwitch_close(SWITCHinstr);

return 0;

}

Discussion
Example 3-4 breaks down into the following steps:

1. The program begins and ends with the same steps as described in
Example 3-1. Refer to that example for more information on steps not
in bold.

2. The first command is Connect. This operation works the same for
controlling switches on general-purpose and multiplexers, with the
exception that the default names are different.

3. You then continue to open and close points on the matrix. This cycle
can continue indefinitely.

Basic Scan
When the number of channels to scan becomes large, any improvement in
efficiency can have a dramatic effect on the overall scan time. One way to
improve efficiency is to have the measurement device and the switch talk
to each other to make sure each runs as fast as possible. In this situation,
you can use scanning. Using scanning, you download the set of switches to
open and close into the memory of the device. The scanning process then
uses triggers to communicate between the measurement (or source) device
and the switch device itself.

Example 3-5 shows how to scan 16 channels with a scanning digital
multimeter (DMM). For more details of the scan list syntax itself, refer to
the Preparing a Scan List String section in Chapter 5, Scanning.

Note What the switch considers Trigger Input is often called Voltmeter Complete by
the DMM.

Chapter 3 Introductory Programming Examples

NI-SWITCH Software User Manual 3-10 ni.com

Example 3-5. Scanning

Figure 3-6. Scanning Switches with a DMM Block Diagram

#include "niswitch.h"

int main (void)

{

ViSession SWITCHinstr; /* Communication Channel */

ViStatus status; /* For checking errors */

/* Begin by opening a communication channel to the instrument */

status = niSwitch_init("PXI0::16::INSTR", VI_TRUE, VI_TRUE,&SWITCHinstr);

if (status < VI_SUCCESS) {

/* Error Initializing Interface...exiting */

return -1;

}

/* NOTE: For simplicity, we will not show any other error checking. */

/* Turn off Continuous mode. We want a one-shot scan */

status = niSwitch_SetContinuousScan(SWITCHinstr, VI_FALSE);

/* CONFIGURE THE DMM TO TAKE 16 READINGS AND WAIT FOR A */

/* TRIGGER BEFORE STARTING EACH READING. ALSO */

/* ASSERT A TRIGGER AFTER EACH READING. */

/* Now scan... */

status =

niSwitch_Scan(instr,”com0->ch0:15;”,NISWITCH_VAL_SWITCH_INITIATED);

/* Wait for Scan to complete */

status = niSwitch_WaitForScanComplete(SWITCHinstr, 5000);

/* DOWNLOAD DATA FROM DMM */

/* Close communication channel */

status = niSwitch_close(SWITCHinstr);

return 0;

}

Chapter 3 Introductory Programming Examples

© National Instruments Corporation 3-11 NI-SWITCH Software User Manual

Discussion
Example 3-5 breaks down into the following steps:

1. The program begins with the same steps as described in Example 3-1.
Refer to that example for more information on steps not in bold.

2. At this point, you set the continuous mode to False. This mode
indicates whether the switch device should cycle through the scan list
or stop at the end of the scan list. In this case, you want the scan to stop
after 16 channels. However, if you wanted to read the same channels
multiple times, you would set up the 16 channels in the scan list and
set the continuous mode to True.

3. Now that the switch is configured, you need to configure the
measurement/source instrument. In this example, you are using a
scanning DMM. The code necessary is not included because that is
dependent on the DMM. However, the set of steps necessary to
configure the DMM are as follows:

a. First, you configure the DMM to take readings only when it
detects a trigger on its trigger input.

b. Next, you configure it to generate triggers after it takes a reading.

c. Finally, you tell the DMM to take 16 measurements.

4. You can now initiate the scan. NI-SWITCH has several operations for
performing a scan, but the simplest one is Scan. Here you prepare a
list of which channels to scan and in what order. The operation
automatically programs the switch device and closes the first entry in
the scan list. Because the switch device is configured to generate a
trigger when a switch is closed, the first switch starts the handshaking.
Refer to Chapter 5, Scanning, for more information about scanning
operations and the scan list syntax.

5. Scan automatically returns the control to the program when the
scanning mode is enabled. To determine when the scan is complete,
call Wait For Scan Complete. Notice that you can use this
operation only when the switch is not in continuous mode. If you are
using continuous mode, check the status of the other instrument to see
when the scan is complete.

Note niSwitch Wait for Scan to Complete is only valid for PXI and cannot be used with
SCXI.

6. The last step is to retrieve the measurements from the DMM when the
scanning is complete.

© National Instruments Corporation 4-1 NI-SWITCH Software User Manual

4
Manually Controlling Switches

This chapter describes operations you can use to control a switch device
manually—rather than automatically through scanning operations—and
discusses the effect of switch topology on manual operations. This chapter
also summarizes the reset functions and the various possible levels of reset.

Connect and Disconnect
Connect and disconnect operations perform standard connections between
different switch channels. These operations make creating an application
with the switch driver quick and simple.

General-Purpose Switch Topologies
The general-purpose topology refers to a switch device containing multiple
switches that are completely independent of one another. Examples of
general-purpose switch devices are the SCXI-1160 (16-channel switch)
and the SCXI-1161 (8-channel, high-power switch). These National
Instruments devices are designed to make or break electrical circuits, much
as a light switch in your house controls the power to the light bulb. Because
each of these switches is independent, the general-purpose switch is one of
the simplest switch devices to use. Below are LabVIEW and C examples of
opening and closing switches on a general-purpose switch device.

Figure 4-1. Open/Close General-Purpose Switch Block Diagram

/* Open switch #0 */

status = niSwitch_Disconnect(instr, "com0", "nc0");

/* Close switch #1 */

status = niSwitch_Connect(instr, "com1", "no1");

Chapter 4 Manually Controlling Switches

NI-SWITCH Software User Manual 4-2 ni.com

The parameters are the session and the channel names. The session
parameter is the communication handle returned by Initialize, which
the program must call before issuing any other operation to the hardware.
The channel name parameters indicate which of the independent switches
are to be activated.

Note All National Instruments switch devices number their channels starting from zero.
Refer to the hardware information contained in the switch device’s user manual for a list
of the channel numbers for the specific switch device.

Multiplexers, Scanners, and Trees
Multiplexers, scanners, and trees can all expand the number of channels
available to a measurement or source device. While they have subtle
differences, for the purpose of the software, they can be considered the
same and are documented as such. Whenever you see the word multiplexer,
you can assume it is interchangeable with scanner or tree, unless otherwise
noted.

The output from a multiplexer can vary depending on the configuration of
the device. For example, the NI 2503 is a 24-channel, 2-wire multiplexer.
This means that it can select any one of 24 differential signals to pass
through to the output. However, the output could be either the main output
signals or the analog bus. You could also configure the NI 2503 as two
separate 12-channel, 2-wire multiplexers. In this case, the outputs are
different from those in the single multiplexer case.

Programming the multiplexer, however, looks the same as for the
general-purpose topology. For example:

Figure 4-2. Connect/Disconnect on a Multiplexer/Scanner Switch Block Diagram

/* Open switch #0 */

status = niSwitch_Disconnect(instr, "com0", "ch0");

/* Close switch #1 */

status = niSwitch_Connect(instr, "com0", "ch1");

Chapter 4 Manually Controlling Switches

© National Instruments Corporation 4-3 NI-SWITCH Software User Manual

The parameters are the session and the channel names. The session
parameter is the communication handle returned by Initialize, which
the program must call before issuing any other operation to the hardware.
The channel name parameters indicate which channel(s) to activate.

Matrixes
The final topology covered in this manual is the matrix. The matrix
allows you to connect any input (row) to any output (column). A typical
use for a matrix is to have one side—for example, the columns—connected
to different instruments and the other side—for example, the rows—
connected to the signal points. For example, a 4 × 8 matrix could have a
DMM, oscilloscope, function generator, and power supply connected to
the four columns and could have eight signal points to which any one
(or multiple) of the instruments could connect.

Because the point of a matrix is to make a connection between a row and a
column, the output of the matrix is no longer implicit. For this reason, new
channel names are required to handle matrixes. Below are two examples of
the operations taken from Chapter 3, Introductory Programming
Examples.

Figure 4-3. Connect/Disconnect Channels in a Matrix Topology Block Diagram

/* Close the Matrix Point (row=3, col=4) */

status = niSwitch_Connect(instr, "r3", "c4");

/* Open the Matrix Point (0, 0) */

status = niSwitch_Disconnect(instr, "r0", "c0");

The parameters are the session and the row-and-column names. The session
parameter is the communication handle returned by Initialize, which
must be called before any other operation to the hardware. The row and
column names indicate which connections to make.

Chapter 4 Manually Controlling Switches

NI-SWITCH Software User Manual 4-4 ni.com

Reset
Chapter 2, API Overview, discussed two ways to reset the switch device to
its powered-on state. These two ways are through the reset parameter in
Initialize, or explicitly through a call to Reset. However, there is
another operation that provides more granularity to reset. You can use
Disconnect All to disconnect all existing paths. This operation
disconnects the paths without affecting the configuration information
already stored by the switch module.

Analog Bus
In addition to the common connections, switches can have an output that
has its own switch—the analog bus. This output is designed so that switch
modules can share a common wire back to the instrument. To prevent
short-circuiting signals, you can have only one switch module on the
analog bus at a time—that is, its analog bus switch is closed.

Notice that because the analog bus has a switch, it appears as a channel
connected to the common, as shown in Figure 4-4.

Figure 4-4. Analog Bus Connected to Common

CH 0

CH 1

CH 2

CH 3

COM 0

AB 0

Chapter 4 Manually Controlling Switches

© National Instruments Corporation 4-5 NI-SWITCH Software User Manual

For this reason, connecting to the analog bus can be a two-step process,
as shown in Figure 4-5.

Figure 4-5. Connect Channel 7 to Analog Bus Block Diagram

1. Connect the analog bus to the common.

niSwitch_Connect(instr, "ab0", "com0");

2. Connect the channels to the common.

niSwitch_Connect(instr, "com0", "ch7");

The reason you cannot simply connect ab0 and ch7 with one call to
Connect is that it would require the use of another channel. Connect can
close multiple switches so that it can make the path, but it cannot do this if
it means going through extra channel switches.

© National Instruments Corporation 5-1 NI-SWITCH Software User Manual

5
Scanning

This chapter discusses the building blocks of scanning, such as scan lists
and trigger configuration. In addition, this chapter includes scanning
examples with either software triggers or with hardware timed scanning.

Overview
In many cases, you can control the switches on a switch device by
supplying a list of channels to scan. Multiplexers, general-purpose, and
matrix devices can use scanning to sequence through a set of patterns. You
can program these patterns of connections using a scan list. The switch
driver converts the scan list to the appropriate hardware commands and
downloads them into memory located on the switch module. Once
scanning has been initiated, the switch module executes the scan list
independent of the host CPU.

The measurement device and the switch module use handshaking to control
timing. Simply stated, when the measurement device finishes a
measurement, it sends a digital trigger to the switch module. The switch
module then opens and/or closes switches as indicated by the scan list.
After these switches settle, the switch module sends a digital trigger to
the measurement device, indicating that the device can make another
measurement.

Other triggering methods, such as synchronous scanning and software
triggering, are also possible. These methods are described in the
Configuring the Triggering Options section. Refer to your measurement
device and switch module hardware documentation for additional
triggering information.

Notes All PXI modules can perform scanning, and the SCXI modules have varying levels
of support for scanning. Refer to Chapter 6, Using NI-SWITCH with SCXI, for more
information.

Whenever the switch device is scanning (Is Scanning returns True), the only operations
you can use are Is Scanning, Wait For Scan Complete, Abort Scan, and the

Chapter 5 Scanning

NI-SWITCH Software User Manual 5-2 ni.com

various Get Attribute operations. All other operations return an error if executed during
scanning.

Preparing a Scan List String
The first step in scanning is to tell the driver what connections to make and
in what order. You do this by preparing a scan list string, which is then
parsed by the driver. Pass this string to the driveby setting the scan list
attribute or by calling scan.

Using Basic Scan List Syntax
This section gives some basic syntax and examples of scan strings and
describes how the scan list entries are interpreted when Scan Mode is set to
No Action. This interpretation changes slightly when the Scan Mode is set
to Break Before Make. This change, along with other time-saving and
advanced syntax features, is described in the Using Advanced Scan List
Syntax section.

You can use the basic scan list syntax described in this section to define
almost any possible scan list by combining scan list characters to form scan
list entries, then combining entries to form scan lists.

Connect Action
Connect actions instruct the driver to connect channels together. The
syntax is channelName->channelName. White space is allowed on
either side of the -> characters.

Disconnect Action
Disconnect actions instruct the driver to disconnect channels. The syntax is
a tilde (~) character followed by a connect action. White space is allowed
after the tilde.

Table 5-1. Connect Action Examples

String Meaning

a->b Connect a to b

a -> b Same as above

Chapter 5 Scanning

© National Instruments Corporation 5-3 NI-SWITCH Software User Manual

Switch Action
A switch action is either a connect action or a disconnect action and is
defined only for convenience in describing the scan list syntax. The connect
action syntax is chanName->chanName. The disconnect action syntax is
~chanName->chanName.

Connection Separator
The connection separator is the ampersand (&) character. This character
separates two switch actions. The connection separator does not ensure that
the switch actions it separates execute in any particular order.

Sequence Separator
The sequence separator is a double ampersand (&&). Similar to a connection
separator, a sequence separator separates two switch actions. A sequence
separator can also have a switch action on its left and the end of the scan
list on its right (useful when Scan Mode is set to No Action and Continuous
Scan is set to True). The sequence separator instructs the driver that all
currently switching switches must settle before performing the switch
action on the right.

Table 5-2. Disconnect Action Examples

String Meaning

~a->b Disconnect a from b

~ a->b Same as above

Table 5-3. Connection Separator Example

String Meaning

a->b & c->d Connect a to b and c to d

Table 5-4. Sequence Separator Example

String Meaning

a->b && c->d Connect a to b, wait for debounce,
then connect c to d

Chapter 5 Scanning

NI-SWITCH Software User Manual 5-4 ni.com

Action Separator
An action separator is either a connection separator (&) or a sequence
separator (&&). Action separators are defined only for convenience in
describing the scan list syntax.

Scan List Entry
A scan list entry is made up of zero or more switch actions separated by
action separators. A scan list entry is terminated by a semicolon or by the
end of the scan list. Refer to Table 5-5 for scan list entry examples.

If the scan list entry contains at least one connect action, then a scanner
advanced signal (shown as <sa> in Table 5-5) is generated after the switch
actions specified have debounced. If the entry is terminated with a
semicolon, then after performing the switch actions and generating the
scanner advanced signal (if needed), the switch module waits for a trigger
(shown as <wft> in Table 5-5).

The last two examples in Table 5-5 do not generate an <sa> since no
connection actions are in these entries.

Table 5-5. Scan List Entry Examples

String Meaning

a->b; Connect a to b, wait for debounce, then
send <sa>, then <wft>

a->b Connect a to b, wait for debounce, then
send <sa>

a->b & c->d; Connect a to b and c to d, wait for
debounce, then send <sa>, then <wft>

a->b && c->d; Connect a to b, wait for debounce, then
connect c to d, wait for debounce, then
send <sa>, and finally <wft>

a->b & ~c->d; Connect a to b and disconnect c from d,
wait for connect and disconnect to
debounce, then send <sa>, then <wft>

~c->d; Disconnect c from d, then <wft>

; <wft>

Chapter 5 Scanning

© National Instruments Corporation 5-5 NI-SWITCH Software User Manual

A scan list entry containing a <wft> without a <sa> can be useful when
doing multimodule scanning (Refer to Appendix B, Scanning Multiple
Devices). However, a <wft> without an <sa> can cause the measurement
acquisition to stall for single-module scanning applications.

You can force the scanner advanced signal to be generated by inserting
<sa> in the scan list. The Using Advanced Scan List Syntax section
describes how to use <sa>.

Note The functionality of the scanner advanced signal implies that the relays in the switch
module have debounced. In further examples, the wait for debounce action associated with
each <sa> is not explicitly mentioned.

Scan List
A scan list is made up of one or more scan list entries. Refer to Table 5-6
for scan list examples.

Example 5-1. Basic Scan List Example
The following example uses only the basic scan list syntax.

To measure three voltages using the NI 2503 as a 24–to–1 multiplexer, you
can connect the three voltage signals to ch0, ch1, and ch2 of the NI 2503.
Then connect the NI 2503 com0 line to the input of a DMM. Finally set the
scan list attribute to the string:

ch0->com0; ~ch0->com0 &&

ch1->com0; ~ch1->com0 &&

ch2->com0; ~ch2->com0 &&

Table 5-6. Scan List Entry Examples

Scan List
Scan List Separated into

Individual Entries

a->b; ~a->b && c->d; Entry 1: a->b;
Entry 2: ~a->b && c->d;

a->b; ~a->b && c->d Entry 1: a->b;
Entry 2: ~a->b && c->d

a->b Entry 1: a->b

Refer to scan list entry definition to see how these entries are interpreted.

Chapter 5 Scanning

NI-SWITCH Software User Manual 5-6 ni.com

Note New lines are a valid type of white space—they can make a scan list much more
readable.

The first line of the scan list string instructs the switch to connect ch0 to
com0, wait for the DMM to take a measurement, and then disconnect ch0
from com0 before proceeding to the next line. Similar for the second and
third lines.

Notice the && at the end of the third line. This syntax is unneccessary if you
will perform this scan list only once. However, if Continuous Scan is set to
True, the && is required to ensure that ch2 is disconnected from com0
before repeating the scan list and connecting ch0 to com0.

The scan list string for this simple example is still quite long. The Using
Advanced Scan List Syntax section describes some syntax features that can
shorten this scan list dramatically.

Using Advanced Scan List Syntax

Scan Mode
Scan Mode is not specified in the scan list string itself. Instead, it is an
attribute that affects how the scan list string is interpreted.

In the Using Basic Scan List Syntax section, all explanations assume that
the Scan Mode is set to No Action. With Scan Mode set to No Action, the
driver does not insert any disconnect actions.

The IviSwtch Specification also allows Scan Mode to be set to Make After
Break. NI-SWITCH does not currently support the Make After Break
value.

The last value that Scan Mode can be set to is Break Before Make. While
in Break Before Make Scan Mode, any connect actions appearing in a
semicolon terminated scan list entry are disconnected at the end of that
entry (happens after the <sa> and <wft>). Multiple auto-generated
disconnects are separated by connection separators (&). If an action
separator is needed after the last auto-generated disconnect, then a
sequence separator (&&) is used.

Chapter 5 Scanning

© National Instruments Corporation 5-7 NI-SWITCH Software User Manual

This functionality is simply for your convenience—the same scan list could
be typed out in full strings, such as when Scan Mode is set to No Action.

Connection Range
Connection range is a shorthand syntax added for your convenience; the
syntax is chanInt:Int->otherChan or otherChan->chanInt:Int.
You can use a connection range to specify that many channels be used in
place of the range. Either a semicolon or a semicolon modifier1 must follow
the connection range.

Table 5-7. Examples of Break Before Make

Break Before Make Scan List No Action Equivalent

a->b; a->b

a->b; a->b; ~a->b &&

a->b; c->d; a->b; ~a->b && c->d; ~c->d &&

a->b; c->d a->b; ~a->b && c->d

a->b & c->d; e->f; a->b & c->d; ~c->d & ~a->b &&
e->f; ~e->f &&

a->b && c->d; e->f; a->b && c->d; ~c->d & ~a->b
&& e->f; ~e->f &&

a->b;; a->b; ~a->b;

1 The repeat, scanner advanced, and wait for trigger can serve as semicolon modifiers.

Table 5-8. Examples of Connection Range

Scan Mode Scan List Entry No Action Expanded Equivalent

No Action ch0:2->com0; ch0->com0;
ch1->com0;
ch2->com0;

No Action a->b & ch0:2->com0; a->b & ch0->com0;
ch1->com0;
ch2->com0;

Break Before Make ch0:2->com0;* ch0->com0; ~ch0->com0 &&
ch1->com0; ~ch1->com0 &&
ch2->com0; ~ch2->com0 &&

Chapter 5 Scanning

NI-SWITCH Software User Manual 5-8 ni.com

Repeat
Repeat is most useful for entering several semicolons (used in multimodule
scanning), but it can be used in other contexts also. The syntax is <repeat
integer>;. The word “repeat” is not case sensitive. The trailing
semicolon is required.

The text affected by a repeat is defined as the character after the previous
semicolon (or the beginning of the scan list if there was no previous
semicolon), up to and including the character before the lesser than (<) in
<repeat>. This text is referred to as the repeat body.

The scan list is interpreted the same as a list where the repeat body is typed
the specified integer number of times, each time terminated by a semicolon.
This rule allows <repeat> to serve as a semicolon modifier

Break Before Make a->b &
ch0:2->com0;

a->b & ch0->com0; ~ch0->com0 &&
ch1->com0; ~ch1->com0 &&
ch2->com0; ~ch2->com0 & ~a->b

 &&

* Notice that this short scan list is equivalent to the lengthy scan list given in Example 5-1.

Table 5-9. Repeat Examples

Scan List Expanded Equivalent*

a->b; <repeat 3>;
c->d;

a->b; ;;; c->d;

ch0:3->com0
<repeat 6>;

ch0:3->com0;
ch0:3->com0;
ch0:3->com0;
ch0:3->com0;
ch0:3->com0;
ch0:3->com0;

* Interpreted according to Scan Mode.

Table 5-8. Examples of Connection Range (Continued)

Scan Mode Scan List Entry No Action Expanded Equivalent

Chapter 5 Scanning

© National Instruments Corporation 5-9 NI-SWITCH Software User Manual

Scanner Advanced
Scanner advanced directs the driver to generate a scanner advanced signal
at that point in the scan list. It also allows you to specify the line on which
to generate the scanner advanced signal. The syntax for scanner advanced
is <sa optionalLine>. If optionalLine is not present, then the line
specified in Scan Advanced Output is used. Refer to Table 5-13 for valid
text representations of the possible lines to specify as optionalLine.

The line can be the same as that specified in Scan Advanced Output, but
it need not be.

Note Not all modules are able to use all the functionality of scanner advanced.
SCXI-1127/1128 cannot use <sa>. PXI can only change the destination to None.
SCXI-1129 fully supports <sa>.

Scanner Advanced <sa> serves as a semicolon modifier when used in the
following combinations:

<sa>;

<sa> <repeat>;

<sa> <wft>;

<sa> <wft> <repeat>;

Otherwise, <sa> behaves in the scan list grammar as an action separator.
Multiple <sa> and/or <wft> behave (in the grammar) as a single action
separator.

Repeat must be followed by a semicolon. This rule is not changed with the
addition of <sa>. The combination <repeat> <sa>; is illegal. Instead,
use the combination <sa> <repeat>; Refer to Table 5-10 for Scanner
Advanced Examples.

In summary, <sa> may act as a modifier for the semicolon, changing the
destination of the scanner advanced signal associated with the semicolon.
Scanner advanced <sa> can also stand alone, causing a scanner advanced
signal to be generated where it otherwise would not be generated.

Inserting <sa> in a scan list entry means that at least one connect action
must appear between the <sa> and the scan list entry terminator (which is
a semicolon or the end of the scan list) for that terminator to cause another
<sa> to be generated.

Chapter 5 Scanning

NI-SWITCH Software User Manual 5-10 ni.com

In the following examples, assume that Scan Advanced Output is set
to ttl0 and that the Scan Mode is set to No Action.

Table 5-10. Scanner Advanced Examples

Scanlist Meaning

a->b; Connect a to b, then <sa ttl0>, then
<wft>

a->b <sa>; Same as above

a->b <sa ttl5> c->d; Connect a to b, then <sa ttl5>, then
connect c to d, then <sa ttl0>, then
<wft>

a->b <sa ttl5> c->d Connect a to b, then <sa ttl5> then
connect c to d, then <sa ttl0>

c0:3->r0 <sa fc>; Connect c0 to r0, then <sa fc>,
then <wft>
Connect c1 to r0, then <sa fc>,
then <wft>
Connect c2 to r0, then <sa fc>,
then <wft>
Connect c3 to r0, then <sa fc>,
then <wft>

c0:3->r0

<sa fc> <repeat 3>;

Interpreted the same as:
c0:3->r0 <sa fc>;
c0:3->r0 <sa fc>;
c0:3->r0 <sa fc>;

~a->b; Disconnect a from b, then <wft>

Refer to the Scan List Entry
section for an explanation as to
why no <sa> is generated in this
case)

~a->b <sa>; Disconnect a from b, then
<sa ttl0>, then <wft>

Chapter 5 Scanning

© National Instruments Corporation 5-11 NI-SWITCH Software User Manual

Wait for Trigger
Wait for trigger directs the driver to wait for a trigger at that point in the
scan list. It also allows you to specify the line to wait on. The syntax is
similar to the scanner advanced syntax: <wft optionalText>. If
optionalText is not present, then the line specified in the Trigger Input
attribute is used. Refer to Table 5-13 for valid text representations of the
possible lines to program as optionalText.

Note Not all modules are able to use all the functionality of wait for trigger.

Note Not all modules are able to use all the functionality of scanner advanced.
SCXI-1127/1128 cannot use <wft>. PXI can only change the destination to None.
SCXI-1129 fully supports <wft>.

Wait for trigger <wft> serves as a semicolon modifier when used in the
following combinations:

<wft>;

<wft> <repeat>;

Otherwise, <wft> behaves in the scan list grammar as an action separator.
Multiple <sa> and/or <wft> entries behave (in the grammar) as a single
action separator.

Note Wait for trigger <wft> in the combination <wft> <sa>; does not serve as a
semicolon modifier. This combination will cause the switch to wait for a trigger, generate
a scanner advanced signal, then wait for another trigger.

Similar to <sa>, <wft> can be used to modify the trigger associated with a
semicolon or it can stand alone, causing the switch to wait for a trigger at a
location where it otherwise would not wait.

For the examples in Table 5-11, assume that Scan Advanced output is set
to ttl5 and that Trigger Input is set to ttl0.

Table 5-11. Wait for Trigger Examples

No Action Scan List Meaning

a->b; Connect a to b, then <sa ttl5>,
then <wft ttl0>

a->b<wft>; Same as above

a->b<sa><wft>; Same as above

Chapter 5 Scanning

NI-SWITCH Software User Manual 5-12 ni.com

a->b<sa><wft> Same as above if Scan Mode is No
Action. It is interpreted differently
than the previous example if Scan
Mode is Break Before Make.
Refer to Table 5-12.

a->b<sa ttl2> <wft ttl3>; Connect a to b, then <sa ttl2>,
then <wft ttl3>

a->b <wft ttl3>; c->d; Connect a to b, then <sa ttl5>,
then <wft ttl3>
Connect c to d, then <sa ttl 5>,
then <wft ttl0>

Table 5-12. Wait for Trigger with Break Before Make Examples

Break Before Make Scan List No Action Equivalent Scan List

a->b<sa><wft>; a->b <sa> <wft> ~a->b

a->b<sa><wft> a->b <sa> <wft>

a->b<sa><wft> c->d; a->b <sa> <wft> c->d <sa> <wft>
~c->d & ~a->b

Table 5-13. Text Representations of Trigger Lines

Text String Line This Text Specifies
Valid in <sa>
commands?

Valid in <wft>
commands?

immediate NISWITCH_VAL_IMMEDIATE No Yes

imm NISWITCH_VAL_IMMEDIATE No Yes

sw NISWITCH_VAL_SW_TRIG_FUNC No Yes

none NISWITCH_VAL_NONE

(when used with the <sa> token)

NISWITCH_VAL_IMMEDIATE

(when used with the <wft> token)

Yes Yes

external NISWITCH_VAL_EXTERNAL Yes Yes

Table 5-11. Wait for Trigger Examples (Continued)

No Action Scan List Meaning

Chapter 5 Scanning

© National Instruments Corporation 5-13 NI-SWITCH Software User Manual

Break
Break (<break>) was specified in the NI-SWITCH 1.5 scan list syntax
specification. Some modules can support this functionality; however,
NI-SWITCH does not properly support it. Break has been removed from
the NI-SWITCH 1.6 scan list syntax specification.

Parsed Scan List
You can read Parsed Scan List to see how the driver parsed the scan list. If
an error occurred while parsing the scan list, this attribute contains a parsed
version of the scan list up to the error. If no error occurred while parsing,
this attribute contains a parsed version of the entire scan list. Read this
attribute after writing to Scan List or after calling Configure Scan List.

ext NISWITCH_VAL_EXTERNAL Yes Yes

ttl0 NISWITCH_VAL_ttl0 Yes Yes

ttl1 NISWITCH_VAL_ttl1 Yes Yes

ttl2 NISWITCH_VAL_ttl2 Yes Yes

ttl3 NISWITCH_VAL_ttl3 Yes Yes

ttl4 NISWITCH_VAL_ttl4 Yes Yes

ttl5 NISWITCH_VAL_ttl5 Yes Yes

ttl6 NISWITCH_VAL_ttl6 Yes Yes

ttl7 NISWITCH_VAL_ttl7 Yes Yes

pxi_star NISWITCH_VAL_PXI_STAR Yes Yes

rc NISWITCH_VAL_REARCONNECTOR Yes Yes

fc NISWITCH_VAL_FRONTCONNECTOR Yes Yes

Table 5-13. Text Representations of Trigger Lines (Continued)

Text String Line This Text Specifies
Valid in <sa>
commands?

Valid in <wft>
commands?

Chapter 5 Scanning

NI-SWITCH Software User Manual 5-14 ni.com

Configuring the Triggering Options
Configuring the triggering options is very simple for the majority of
scanning applications. However, NI-SWITCH does offer a wide variety of
triggering options to cover many of the side cases. To keep the descriptions
simple, this section describes a common case. For details of more advanced
triggering options, refer to Appendix B, Scanning Multiple Devices.

One way to trigger, as shown in Figure 5-1, is hardware scanning where
the measurement device and the switch handshake between each other.
In this case, configuring the triggers is as simple as setting trigger
values in Configure Scan Trigger. These values can be either
EXTERNAL—which typically is either the front or rear trigger
connector—or one of the TTL or ECL trigger lines.

Figure 5-1. Simple Two-Wire Handshake with DMM

Another way to set the Trigger parameter is Software Trigger
Function. This setting tells the switch device that the trigger will not
come via a hardware trigger line, but rather from a software command. The
program sends the command via Send Software Trigger. This setting
is useful if the timing information is more complicated than a simple trigger
line and requires the controller to calculate when to sequence the scan.

DMM

External Trigger In

PXI

Scan Advanced

External Tigger InputVoltmeter Complete

Chapter 5 Scanning

© National Instruments Corporation 5-15 NI-SWITCH Software User Manual

Changing the Polarity of the Input Trigger and Scan
Advanced

You can change the polarity of the input trigger and the scan advanced
trigger by setting Trigger Input Polarity and Scan Advanced Polarity
respectively.

Trigger Input Polarity specifies the polarity of the trigger input signal being
sent to the switch module. You can specify which edge (rising or falling) of
the signal is the active edge. If Trigger Input is specified to be rising edge,
then the switch module triggers on the rising edge of the input trigger. Refer
to the NI-SWITCH C Reference Help or NI-SWITCH VI Reference Help for
a full description and the valid values for this attribute.

Scan Advanced Polarity effects the polarity of the scan advanced signal that
the switch module sends. If Scan Advanced Polarity is specified to be rising
edge, then the switch module generates positive scan advanced pulses.
Refer to the NI-SWITCH C Reference Help or NI-SWITCH VI Reference
Help for a full description and the valid values of this attribute.

Using Scan Delay
The switch device generates a scan advanced trigger after all the switches
have settled. This action alerts the measurement device that it can now take
a measurement. The switch devices themselves are designed to wait a
specified amount of time (Refer to Settling Time in the NI-SWITCH C
Reference Help) to ensure the switch has settled. However, due to
capacitance in the system, the switch may take more time for the switch to
settle. To increase the time between the settling time and the scan advanced
trigger, you can set the Scan Delay in Configure Scan Trigger.

Chapter 5 Scanning

NI-SWITCH Software User Manual 5-16 ni.com

Combining Scanning and Routing Functions
NI-SWITCH does not support the use of routing functions, such as
Connect and Disconnect, while a scan is in progress. However, your
application may need to use the switch routing functions in some parts of
your code, while other sections may need to use scanning functions. An
NI-SWITCH application might need to know what state the switch device
needs to be in before a scan can be initiated, and what state the switch
device is left in when a scan completes or is aborted.

You can use Disconnect All after a scan or after a series of routing
functions to disconnect all existing paths on the switch device. Most
applications should call Disconnect All between routing and scanning
functions to put the switch device in a known state.

Scan Operations
In Example 3-5. Scanning, you saw that performing a scan takes very little
coding. Scan uses the scan list as its main parameter, parses the scan list,
programs the hardware, and initiates the scan before returning. Also, it does
not wait for the scan to complete before it returns.

You can use Is Scanning or Wait For Scan Complete to determine
if the device is currently in Scan Mode. However, if the continuous mode
(via Set Continuous Mode) is set to True, the switch device has no way
of knowing the scan is complete, so neither of these operations tells the
information you need. Instead, track the state of the scan by monitoring the
measurement device since the measurement device has the actual count of
measurements to be made.

Note Wait for Scan Complete is only valid for PXI and cannot be used with SCXI.

Example 5-2. Scan Operations and Programming Example
Example 5-2 shows how to use the NI 4060 DMM and the NI 2503
24-channel multiplexer together to perform a hardware scan when the
switch is set to a continuous Scan Mode.

Chapter 5 Scanning

© National Instruments Corporation 5-17 NI-SWITCH Software User Manual

Figure 5-2. Scanning the NI 2503 Using the NI 4060 DMM Block Diagram

Chapter 5 Scanning

NI-SWITCH Software User Manual 5-18 ni.com

void main(void)

 {

 ViStatus error = VI_SUCCESS;

 ViSession vi = VI_NULL;

 ViSession instr = VI_NULL;

 ViString resourceName = "DAQ::1::INSTR";

 ViBoolean idQuery = VI_TRUE;

 ViBoolean reset = VI_TRUE;

 ViReal64 powerlineFreq = NIDMM_VAL_60_HERTZ;

 ViInt32 function = NIDMM_VAL_DC_VOLTS;

 ViReal64 range = 10.00;

 ViReal64 resolution = 0.01;

 ViInt32 numOfMeas = 64;

 ViReal64 measurements[64];

 ViInt32 numpts;

/*- NI-SWITCH configurations---*/

 checkErr(niSwitch_init ("PXI0::16::INSTR", VI_TRUE, VI_TRUE, &instr));

 checkErr(niDMM_init(resourceName, idQuery, reset, &vi));

 checkErr(niSwitch_ConfigureScanlist (instr, "com0->ch0:15;",

 NISWITCH_VAL_BREAK_BEFORE_MAKE));

 checkErr(niSwitch_ConfigureScanTrigger (instr, 0.0,

 NISWITCH_VAL_ttl0,

 NISWITCH_VAL_ttl1));

 checkErr(niSwitch_SetContinuousScan (instr, 1));

/*- Call NIDMM_ConfigureMeasurement() to set function, range and res---*/

 checkErr(niDMM_ConfigureMeasurement (vi, function, range, resolution));

 /*- Configure Powerline frequency--------------------------------------*/

 checkErr(niDMM_ConfigurePowerlineFrequency (vi, powerlineFreq));

 /*- Configure a multipoint acquisition---------------------------------*/

 checkErr(niDMM_ConfigureMultiPoint(vi, 1, numOfMeas, NIDMM_VAL_ttl1,

0.5));

/*-ConfigureMeasurementCompleteDestination----------------------------*/

 checkErr(niDMM_ConfigureMeasurementComplete (vi, NIDMM_VAL_ttl0,

NIDMM_VAL_POS));

 /*- Initiate switch and DMM--*/

 checkErr(niDMM_Initiate (vi));

 checkErr(niSwitch_InitiateScan (instr));

 /*- Read 64 measurementswith DMM---------------------------------------*/

Chapter 5 Scanning

© National Instruments Corporation 5-19 NI-SWITCH Software User Manual

 checkErr(niDMM_FetchMultiPoint (vi, NIDMM_VAL_TIME_LIMIT_AUTO, 64,

measurements, &numpts));

 /*- Abort and Close DMM and Switch--------------------------------------*/

 checkErr(niDMM_close (vi));

 checkErr(niSwitch_AbortScan (instr));

 checkErr(niSwitch_close (instr));

Error:

 if (vi)

 niDMM_close(vi);

 if (error < VI_SUCCESS)

 messageHandler(error);

 }

© National Instruments Corporation 6-1 NI-SWITCH Software User Manual

6
Using NI-SWITCH with SCXI

Several conventions have been added to NI-SWITCH to add support for
SCXI. These conventions are SCXI Instrument Descriptors, SCXI Scan
Lists, and Trigger Naming.

For your switch system to operate correctly, you need to properly configure
your hardware. Refer to your hardware user manual for information on
configuration and self-test. For information about topologies for your
switch module, refer to the appropriate section that follows.

Note The SCXI-1127, 1128, and 1129 modules support scanning (refer to Chapter 5,
Scanning). All other SCXI modules do not support scanning.

Switch Topologies for SCXI-1127 and SCXI-1128
This section describes how NI-SWITCH supports the SCXI-1127 and
SCXI-1128.

Three instrument descriptors have been added to describe various
topologies in which the SCXI-1127 and SCXI-1128 can operate. These
topologies are Scanner, Matrix, and Independent. In Scanner Mode, you
can combine several SCXI-1127/1128s into one scanner from a software
point of view. This mode simplifies configuration and programming. In
Matrix mode, you can use your SCXI-1127/1128 as a matrix, directly
controlling the connection of row and columns of a matrix. In Independent
mode, you can individually control any switch. This mode is supported on
the SCXI-1127, SCXI-1128, SCXI-1160, SCXI-1161, and SCXI-1163R.

Two terminal blocks, SCXI-1331 and SCXI-1332, can be used with the
SCXI-1127/1128. The SCXI-1331 is designed for scanner operation.
The SCXI-1332 is specifically designed for matrix operation.

For correct operation of your system, confirm that your SCXI-1127/1128
has been properly configured. Refer to the SCXI-1127/1128 User Manual
for the detailed configuration procedure for the SCXI-1127/1128 module.

Chapter 6 Using NI-SWITCH with SCXI

NI-SWITCH Software User Manual 6-2 ni.com

After configuring the module, complete the following procedure to select
the appropriate terminal block:

1. Double-click the Measurement & Automation Explorer icon on
your computer desktop.

2. Expand Devices and Interfaces.

3. Right-click SCXI-1127 or SCXI-1128 and select Properties.

4. Click the Accessory tab and select the proper terminal block.

The following sections describe these three topologies and the conventions
used for each type.

Scanner Mode
When programming, the general form for the instrument descriptor is as
follows:

SCXIn::m1,m2,m3::SCANNER

where

n = chassis ID

m1,m2,m3 = module slot number

For example, to create a scanner out of three SCXI-1127/1128s in slots 5,
6, and 8 of chassis 2, the instrument descriptor would be as follows:

SCXI2::5,6,8::SCANNER

For just one SCXI-1127/1128, in slot 4 of chassis 1, the instrument
descriptor would be as follows:

SCXI1::4::SCANNER

To make all of chassis 1 a scanner, a shortcut you can use is as follows:

SCXI1::SCANNER

Scans cannot span multiple chassis. A unique session must be created for
each chassis.

The scanner configuration uses the scanning function calls. These calls
require scan lists. A scan list is a string that specifies the channel
connections for scanning. The scan list is comprised of channel names that
are separated with special characters. These special characters determine
the operation the scanner performs on the channels when it executes this
scan list. For proper scanning operation on SCXI-1127/1128, the

Chapter 6 Using NI-SWITCH with SCXI

© National Instruments Corporation 6-3 NI-SWITCH Software User Manual

Continuous Scan parameter in Set Continuous Scan must be set to
True. Also, you must call Abort Scan must be called to stop the scan.

Before building a scan list, you should understand the SCXI channel string
nomenclature.

Single Channel
The general form is as follows:

sc<chassis ID number>!md<module slot number>!ch<channel

number>

For example, channel 3, on module 4, in chassis 2 would be specified as
follows:

sc2!md4!ch30

To create a path between two channels, use -> (a dash followed by a greater
than sign) between the two channel names.

For example, to scan the channel specified above using the com0 bus,
the syntax would be as follows:

sc2!md4!ch3->com0;

Note A semicolon is used to indicate that the SCXI-1127/1128 should wait for a trigger
before proceeding to the next entry in the scan list.

Multiple Sequential Channels
To scan multiple channels in a scan list, concatenate these paths together.

For example, to scan channel 3, 4, and 5 on module 12 in chassis 1 over the
com0 bus, the syntax would be as follows:

sc1!md12!ch3->com0;sc1!md12!ch4->com0;sc1!md12!

ch5->com0;

This example performs the following actions:

1. Select channel 3.

2. Wait for a trigger.

3. Select channel 4.

4. Wait for a trigger.

5. Select channel 5.

Chapter 6 Using NI-SWITCH with SCXI

NI-SWITCH Software User Manual 6-4 ni.com

A simpler way to group channels in a scan list is by using the colon. The
colon is used to delineate between a start channel and an end channel.

For example, you can use the colon in the example above. That string could
be rewritten as follows:

sc1!md12!ch3:5->com0;

This command scans and triggers exactly like the previous example.
There is no limitation on the order of the channel sequence on the
SCXI-1127/1128. To scan the channels in the opposite order, enter the
scan list as follows:

sc1!md12!ch5:3->com0;

In fact, the SCXI-1127/1128 can scan channels in any order.

Multiple Random Channels
For example, to scan channel 8 on module 2, then channel 4 on module 4,
and channel 12 on module 3 in chassis 1 over the com0 bus the syntax
would be as follows:

sc1!md2!ch8->com0;

sc1!md4!ch4->com0;

sc1!md3!ch12->com0;

This example performs the following actions:

1. Select channel 8 (module 2).

2. Wait for a trigger.

3. Select channel 4 (module 4).

4. Wait for a trigger.

5. Select channel 12 (module 3).

Cold-Junction Temperature Sensor Channel
The SCXI-1331 terminal block contains a cold-junction temperature
sensor. This sensor connects to a special channel on the SCXI-1127/1128
dedicated to measuring the ambient temperature of the terminal block. This
channel is used when measuring thermocouples. This channel is always
scanned as a 2-wire channel. You can include the cold-junction
temperature sensor channel at any position in the list with any number of
repetitions by indicating it with the name cjtemp.

Chapter 6 Using NI-SWITCH with SCXI

© National Instruments Corporation 6-5 NI-SWITCH Software User Manual

For example, to scan the cold-junction temperature sensor, and channels 3,
8, and 5 on module 12 in chassis 1 over the com0 bus, the syntax would be
as follows:

sc1!md12!cjtemp->com0;

sc1!md12!ch3->com0;

sc1!md12!ch8->com0;

sc1!md12!ch5->com0;

Analog Bus Configuration
The analog bus channels are automatically connected to the high-voltage
analog backplane on the modules you include in the scanner instrument
descriptor at the time you initiate the scan. In a multimodule scan, this
feature connects the output of the SCXI-1127/1128 to the high-voltage
analog backplane, which is generally connected to a DMM.

In some instances, it you may want to scan a module without the output
connected to the analog backplane. For example, you can to route the
output of the multiplexer to the output terminal of the terminal block, with
an access from the front of the chassis, instead of routing them to the
high-voltage analog backplane. You can achieve this action by calling
Initialize With Options with the following configuration string:

DriverSetup = SCXI-1127 MUX manual AB

This configuration string opens a session to a scanner, but leaves the analog
buses open. To close the analog bus you must call Connect and route the
common bus to the analog bus. For example, to close the ab0 switch, call
Connect with the channel 1 parameter set to com0 and the channel 2
parameter set to ab0. For more details, refer to the SCXI-1127/1128 User
Manual.

You can also close ab2 in a similar manner. You would call Connect with
the channel 1 parameter set to com0 and the channel 2 parameter set to ab2.
This setting is important if you are in a 4-wire configuration. If you are
using a National Instruments DMM with the SCXI-1127/1128, keep in
mind that the DMM uses both the ab0 and ab2 buses for making
measurements. The ab2 bus is used as the sense lines for 4-wire resistance
measurements and for current measurements.

Chapter 6 Using NI-SWITCH with SCXI

NI-SWITCH Software User Manual 6-6 ni.com

Route Functions
You can also route signals while in scanner mode. The route functions
allow you to connect/disconnect from/to one point to/from another
point. For example, to connect channel 0 to analog bus 0 you call Connect
with the channel 1 parameter set to ch0 and the channel 2 parameter set to
com0. Then call Connect Channels with the channel 1 parameter set to
com0 and the channel 2 parameter to ab0. A list of valid channels for the
SCXI-1127/1128 is listed in the following sections.

Analog Bus Channel <ab0...ab3>
Analog bus channels <ab0...ab3> are the four signals that comprise the
SCXI high-voltage analog bus on the SCXI-1127/1128.

Common Bus Channel <com0>
Common bus channel is the internal bus on the scanners. On the
SCXI-1127/1128, the input channels can be connected to the common bus.
The common bus can also be connected to the analog bus channels by the
switch ab0.

Input Channels <ch0…ch63>
The SCXI-1127/1128 has 64 1-wire input channels. You can configure
channels <ch0…ch31> as 2-wire inputs, and you can configure channels
<ch0…ch15> as 4-wire inputs.

Cold-Junction Temperature Sensor (cjtemp)
You can access the cold-junction temperature sensor channel on the
SCXI-1331 terminal block through the SCXI-1127/1128. To read from this
channel call Connect with the channel 1 parameter set to cjtemp and the
channel 2 parameter to com0. Then call Connect with the channel 1
parameter set to com0 and the channel 2 parameter to ab0. The output of
the cold-junction temperature sensor will now be present on analog bus 0.

Configuring the Input Channels
In the scanner mode, you can configure the input channels on a per-channel
basis by choosing between 1-wire, 2-wire, or 4-wire mode. Do this
configuration through MAX. To configure the SCXI-1127/1128, follow
these steps:

1. Double-click the Measurement & Automation Explorer icon on
your computer desktop.

2. Expand Devices and Interfaces.

Chapter 6 Using NI-SWITCH with SCXI

© National Instruments Corporation 6-7 NI-SWITCH Software User Manual

3. Right click SCXI-1127/1128 and select Properties.

4. Click the Channels tab, and set the proper input mode configuration
for the channels you are using.

Matrix Mode
When programming, the general form for the instrument descriptor is as
follows:

SCXIn::m::MATRIX

where

n = chassis ID

m = module slot number

For example, to create a matrix out of a SCXI-1127/1128 that you have in
slot 12 in chassis 1, the instrument descriptor would be as follows:

SCXI1::12::MATRIX

In this version, a unique session must be created for each matrix
module. The matrix configuration uses the route functions. When
a SCXI-1127/1128 is configured as a matrix, it creates a 4 × 8
(4 rows by 8 columns) matrix.

Note The SCXI-1127/1128, when configured as a matrix, must use the SCXI-1332
terminal block and must have the accessory field set appropriately in MAX; otherwise, an
error will result during program execution.

You can expand the four columns by connecting the rows together through
the high-voltage analog backplane. Both columns and rows can
be expanded through the SCXI-1332 terminal block using the Matrix
Expansion Cable from National Instruments. Unlike the scanner topology
that uses a channel naming convention, the matrix uses a column/row
naming convention.

For example, to connect the row 0 to column 3, call Connect with the
channel 1 parameter set to r0 and the channel 2 parameter set to c3. The row
names are r0, r1, r2, and r3. The column names are c0, c1, c2, c3, c4, c5,
c6, and c7.

To use the analog bus and the high-voltage backplane for expansion, call
Connect. For example, to connect r0 to ab0, call Connect with the
channel 1 parameter set to r0 and the channel 2 parameter set to ab0. To

Chapter 6 Using NI-SWITCH with SCXI

NI-SWITCH Software User Manual 6-8 ni.com

connect all of the rows, close the rest of the switches in a similar manner
(connect r1 to ab1, connect r2 to ab2, and connect r3 to ab3).

Independent Mode
The general form is as follows:

SCXIn::m::INDEP

where

n = chassis ID

m = module slot number

For example, to control a SCXI-1160 that is in slot 12 in chassis 1,
the instrument descriptor would be as follows:

SCXI1::12::INDEP

A unique session must be created for each module. The independent
configuration uses the low-level functions such as Single Switch. The
switch names used in these low-level functions refer to physical switches
on the module.

Before using the low-level functions, it is important to understand the
switch naming conventions, shown in the SCXI-1127/1128 User Manual.

The SCXI-1127/1128 is comprised of switches that are opened or closed
based on the configuration of the software. These switches and their names
are listed in the following sections.

Analog Bus Switches <ab0...ab3>
These switches connect/disconnect the SCXI-1127/1128 internal common
bus to/from the high-voltage analog backplane.

Channel Switches <ch0…ch31>
These switches connect/disconnect the input signals to/from the
SCXI-1127/1128 internal common bus.

Bank Connect Switches <bc01...bc23>
The input of the SCXI-1127/1128 consists of four 8 to 1 multiplexers.
These multiplexers can be connected together by closing the bank connect
switches. Specifically, bc01 connects bank 0 to bank 1, bc02 connects
bank 0 to bank 2, and bc23 connects bank 2 to bank 3.

Chapter 6 Using NI-SWITCH with SCXI

© National Instruments Corporation 6-9 NI-SWITCH Software User Manual

Cold Junction Temperature Sensor (cjtemp)
You can connect the cold junction temperature sensor on the SCXI-1331
terminal block through the SCXI-1127/1128. Closing this switch will
connect the cold junction temperature sensor to the internal common bus
on the SCXI-1127/1128.

Triggering
You can use trigger functions when the SCXI-1127/1128 is in Scanner
Mode and when in conjunction with other scan functions. New trigger line
options have been added to Configure Scan Trigger.

Note The SCXI-1127/1128 does not support the Scan Delay parameter in this function.

This function includes the parameters Trigger Input and Scan Advanced
Output.

Trigger Input
Pass the trigger source you want the SCXI-1127/1128 to use to advance to
the next entry in the scan list. The driver uses this value to set the Trigger
Input attribute.

Note The module that receives the trigger must be part of the scanner instrument
descriptor. Although, this module does not have to be in a scan list.

The legal values for the Trigger Input parameter are as follows:

• Immediate—Not valid on SCXI-1127/1128

• External—Not valid on SCXI-1127/1128

• TTL(0)—This variable maps the TTL0 trigger signal to the TRIG0 line
on the SCXI backplane. For example, you could use this variable in the
PXI-1010 chassis. The module in PXI slot 8 of the PXI-1010 chassis
would route its trigger over the TTL(0) bus to trigger the
SCXI-1127/1128. For example, a digital multimeter in PXI slot 8 of
the PXI-1010 chassis would trigger the SCXI-1127/1128 over the
TTL(0) trigger. For other chassis, consult your chassis manual for
support of this trigger.

• TTL <1...7>—Not valid on SCXI-1127/1128

• ECL0—Not valid on SCXI

• ECL1—Not valid on SCXI

• PXI Star—Not valid on SCXI

Chapter 6 Using NI-SWITCH with SCXI

NI-SWITCH Software User Manual 6-10 ni.com

• Software Trigger—The switch module waits until you call Send
Software Trigger.

• Rear Connector—The switch waits until it receives a trigger on the rear
connector before processing the next entry in the scan list. This
variable is valid for SCXI scanners that consist of a single module. If
more than one module is used, you must specify which slot is receiving
the trigger by selecting the Rear Connector of Module <1...12> setting
instead.

• Front Connector—The switch waits until it receives a trigger on the
front connector before processing the next entry in the scan list. When
using SCXI scanners, this variable is valid for scanners that consist of
a single module. If more than one module is used, you must specify
which slot is receiving the trigger input by using the Front Connector
of Module <1...12> instead.

• Rear Connector of Module <1...12>—The switch waits until it
receives a trigger on the rear connector of slot <1...12> before
processing the next entry in the scan list. This variable specifies, in a
multimodule SCXI-1127/1128 scanner, which module is receiving the
trigger input from its rear connector; all other modules that are part of
the scanner receive their trigger input from TRIG0. TRIG0 routing is
done implicitly by the software. Confirm that the module that you
selected is configured in MAX as the cabled module.

• Front Connector of Module <1...12>—The switch waits until it
receives a trigger on the front connector of slot <1...12> before
processing the next entry in the scan list. This variable specifies, in a
multimodule SCXI-1127/1128 scanner, which module is receiving the
trigger input from its front connector; all other modules that are part of
the scanner receive their trigger input from TRIG0. TRIG0 routing is
done implicitly by the software.

Scan Advanced
The scan advanced trigger is used to indicate that the SCXI-1127/1128 has
switched to the next channel and that the switch has settled.

Note Scanner advanced and scan advanced are different names for the same trigger.

After the SCXI-1127/1128 processes each entry in the scan list, it waits
9 ms and then asserts a trigger on the line you specify with this parameter.

Note The Scan Delay parameter is not supported on the SCXI-1127/1128.

Chapter 6 Using NI-SWITCH with SCXI

© National Instruments Corporation 6-11 NI-SWITCH Software User Manual

The legal values for the Scan Advanced parameter are as follows:

• None—The switch module does not produce a scan advanced output
trigger. Use this setting when you are using a National Instruments
DMM as the SCXI controller and measurement device.

• External—Not valid on SCXI-1127/1128

• TTL <0, 1>—Not valid on SCXI-1127/1128

• TTL <2>—SCXI TTL <2>. This variable maps the SCXI-1127/1128
scanner advanced trigger signal to the TRIG2 line on the SCXI
backplane. For example, you could use this variable in a SCXI-2000
chassis. One SCXI-1127/1128 could route its scanner advanced signal
over the SCXI backplane so that another module could route this signal
to its front connector. For other chassis, consult your chassis manual
for support of this trigger.

• TTL <3…7>—Not valid on SCXI-1127/1128

• ECL0—Not valid on SCXI

• ECL1—Not valid on SCXI

• PXI_STAR—Not valid for SCXI

• Rear Connector—Not valid for SCXI

• Front Connector—This variable indicates that the switch module sends
its Scanner Advanced output to the front connector. When using SCXI
switches as scanners, all the modules that are part of the scanner send
their Scanner Advanced output to their respective front connectors.

• Rear Connector of module <1...12>—Not valid for SCXI

• Front Connector of module <1...12>—When using SCXI switches as
scanners, this variable indicates which module is bussing the Scanner
Advanced output to its front connector for access by other instruments,
all other modules in the Scanner send their Scanner Advanced to this
module via TRIG2. Consult your chassis manual to find out if TRIG2
is supported.

Note For SCXI-1127/1128, Trigger Input Polarity and Scan Advanced Polarity cannot be
set to different values. Changing Trigger Input Polarity will change Scan Advanced
Polarity to the same value and vice versa.

Note When performing a scan on SCXI-1127/1128 in a PXI-1010 or PXI-1011 chassis
through the backplane, Trigger Input attribute should be set to TTL0.

Chapter 6 Using NI-SWITCH with SCXI

NI-SWITCH Software User Manual 6-12 ni.com

Switch Topologies for the SCXI-1160, SCXI-1161,
and SCXI-1163R

This section describes how NI-SWITCH supports the SCXI-1160,
SCXI-1161, and SCXI-1163R.

SCXI-1160
The SCXI-1160 module can be operated in two modes: independent mode
or instrument mode.

When you configure the SCXI-1160 in INDEP (independent) mode, the
SCXI-1160 contains 16 SPDT relays. These channels are referred to as
<ch0...ch15>. You can control the SCXI-1160 through low-level function
calls such as Single Switch.

For example, to close relay ch2 on the SCXI-1160, you will call
niSwitch_SingleSwitchControl(vi, "ch2", 1). This action
connects the NO (normally opened) terminal of channel 2 to the COM
terminal of channel 2, and disconnects the NC (normally closed) terminal
of channel 2 from the COM terminal.

When you configure the SCXI-1160 as INSTR, these channels are referred
to as follows:

NC0, NO0, COM0

NC1, NO1, COM1

.....

NC15, NO15, COM15

In this configuration, you can control the SCXI-1160 through the function
call Connect.

For example, to connect the NO terminal of channel 2 to the COM terminal
of channel 2, and to disconnect the NC terminal of channel 2 from the com
terminal, call niSwitch_Connect(vi, "NO2", "COM2"). If you now
want to connect NC2 to com2, you need to first disconnect the existing
connection. The sequence of calls for this task is as follows:

niSwitch_Disconnect(vi, "NO2", "COM2")

niSwitch_Connect(vi, "NC2", "COM2")

Note In C programming, niSwitch_Disconnect(vi, "NO2", "COM2") does not
activate the relay until the niSwitch_Connect(vi, "NC2", "COM2") is executed.

Chapter 6 Using NI-SWITCH with SCXI

© National Instruments Corporation 6-13 NI-SWITCH Software User Manual

SCXI-1161
The SCXI-1161 module can be operated in two modes: independent mode
or instrument mode.

When you configure the SCXI-1161 in INDEP mode, the SCXI-1161
contains eight SPDT relays. These channels are referred to as <ch0...ch7>.
You can control the The SCXI-1161 through low-level function calls such
as Single Switch.

For example, to close relay ch2 on the SCXI-1161, call
niSwitch_SingleSwitchControl(vi, "ch2", 1). This action
connects the NO terminal of channel 2 to the COM terminal of channel 2,
and disconnects the NC terminal of channel 2 from the com terminal.

When you configure the SCXI-1161 as INSTR, these channels are referred
to as follows:

NC0, NO0, COM0

NC1, NO1, COM1

.....

NC7, NO7, COM7

In this configuration, you can control the SCXI-1161 through the function
call Connect.

For example, to connect the NO terminal of channel 2 to the com terminal
of channel 2, and to disconnect the NC terminal of channel 2 from the com
terminal, call niSwitch_Connect (vi, "NO2", "COM2"). If you now
want to connect NC2 to com2, you need to first disconnect the existing
connection. The sequence of calls for this task is as follows:

niSwitch_Disconnect (vi, "NO2", "COM2")

niSwitch_Connect (vi, "NC2", "COM2")

Note niSwitch_Disconnect (vi, "NO2", "COM2") does not activate the relay until
the niSwitch_Connect (vi, "NC2", "COM2") is executed.

SCXI-1163R
The SCXI-1163R can only be operated in the INDEP (independent) mode.
The SCXI-1163R contains eight banks of four input channel switches
connected to a common channel. These input channels are referred to
as <ch0…ch31>. The eight common channels are referred to as
<com0…com7>. Because the SCXI-1163R is comprised of eight banks of

Chapter 6 Using NI-SWITCH with SCXI

NI-SWITCH Software User Manual 6-14 ni.com

four switches each, you can only connect to the common channel that is in
your bank. The banks are organized as such:

ch0, ch1, ch2, ch3, com0

ch4, ch5, ch6, ch7, com1

ch8, ch9, ch10, ch11, com2

ch12, ch13, ch14, ch15, com3

ch16, ch17, ch18, ch19, com4

ch20, ch21, ch22, ch23, com5

ch24, ch25, ch26, ch27, com6

ch28, ch29, ch30, ch31, com7

For example, you can connect ch8 to com2; however, you cannot connect
ch8 to com6.

The SCXI-1163R can be controlled through low-level function calls such
as Single Switch. For example, to close relay 2 on the SCXI-1163R you
call Single Switchwith the action name set to close and the switch name
parameter set to ch2.

The SCXI-1163R can also be controlled through route functions calls such
as Connect. For example, to connect channel 16 to common 4, you call
Connect with the channel 1 parameter set to ch16 and the channel 2
parameter set to com4.

Switch Topologies for the SCXI-1190,
SCXI-1191, and SCXI-1192

This section describes how NI-SWITCH supports the SCXI-1190,
SCXI-1191, and SCXI-1192.

SCXI-1190, SCXI-1191
The SCXI-1190/1191 are general-purpose, quad 4-to-1, high-bandwidth
multiplexers. The SCXI-1190 uses single-pole double-throw
high-bandwidth relays capable of switching signals from DC to 1.3 GHz.
Functionally identical, the SCXI-1191 has a bandwidth of DC to 4 GHz.
The SCXI-1190/1191 modules can be operated in two modes: independent
mode or instrument mode.

Chapter 6 Using NI-SWITCH with SCXI

© National Instruments Corporation 6-15 NI-SWITCH Software User Manual

When you configure the SCXI-1190/1191 in INDEP mode, the
SCXI-1190/1191 contains 16 relays. These channels are referred to as
follows:

sw0A, sw1A, sw2A, sw3A

sw0B, sw1B, sw2B, sw3B

sw0C, sw1C, sw2C, sw3C

sw0D, sw1D, sw2D, sw3D

The SCXI-1190/1191 can be controlled through low-level function calls
such as Single Switch.

For example, to close relay sw1A on the SCXI-1190 (meaning
connection between swA1 and comA), call
niSwitch_SingleSwitchControl (vi, "sw1A", 1).

When you configure the SCXI-1190/1191 as INSTR, the SCXI-1190/1191
contains 16 relays. When configured as INSTR, these channels are referred
to as follows:

ch0A, ch1A, ch2A, ch3A

ch0B, ch1B, ch2B, ch3B

ch0C, ch1C, ch2C, ch3C

ch0D, ch1D, ch2D, ch3D

In this configuration, the SCXI-1190/1191 can be controlled through the
function call Connect.

For example, to connect relay ch1A to comA, call niSwitch_Connect
(vi, "ch1A", "comA"). If you now want to connect ch2A to comA, you
need to first disconnect the existing connection. The sequence of calls for
this task is as follows:

niSwitch_Disconnect (vi, "ch1A", "comA")

niSwitch_Connect (vi, "ch2A", "comA")

Note niSwitch_Disconnect (vi, "ch1A", "comA") does not activate the relay
until the niSwitch_Connect (vi, "ch2A", "comA") is executed. Also remember that
you must always have a closed connection inside a bank.

Chapter 6 Using NI-SWITCH with SCXI

NI-SWITCH Software User Manual 6-16 ni.com

SCXI-1192
The SCXI-1192 module can be operated in two modes: independent mode
or instrument mode.

When you configure the SCXI-1192 in INDEP mode, the SCXI-1192
contains eight SPDT relays. These channels are referred to as <ch0...ch7>.
You can control the The SCXI-1192 through low-level function calls such
as Single Switch.

For example, to close relay ch2 on the SCXI-1192, call
niSwitch_SingleSwitchControl(vi, "ch2", 1). This action
connects the NO terminal of channel 2 to the com terminal of channel 2,
and disconnects the NC terminal of channel 2 from the com terminal.

When you configure the SCXI-1192 as INSTR, these channels are referred
to as follows:

NC0, NO0, COM0

NC1, NO1, COM1

.....

NC7, NO7, COM7

In this configuration, you can control the SCXI-1192 through the function
call Connect.

For example, to connect the NO terminal of channel 2 to the com terminal
of channel 2, and to disconnect the NC terminal of channel 2 from the com
terminal, call niSwitch_Connect (vi, "NO2", "COM2"). If you then
want to connect NC2 to com2, you need to first disconnect the existing
connection. The sequence of calls for this task is as follows:

niSwitch_Disconnect (vi, "NO2", "COM2")

niSwitch_Connect (vi, "NC2", "COM2")

Note niSwitch_Disconnect (vi, "NO2", "COM2") does not activate the relay until
the niSwitch_Connect (vi, "NC2", "COM2") is executed.

Chapter 6 Using NI-SWITCH with SCXI

© National Instruments Corporation 6-17 NI-SWITCH Software User Manual

Switch Topologies for the SCXI-1129
The SCXI-1129 is a 256 crosspoint high-density matrix module. The
SCXI-1129 can operate as four 4 × 16, 2-wire matrixes; two 4 × 32, 2-wire
matrixes; a 4 × 64, 2-wire matrix; two 8 × 16, 2-wire matrixes; a 8 × 32,
2-wire matrix; or a 16 × 16, 2-wire matrix. The following instrument
descriptors have been added to describe various topologies in which the
SCXI-1129 can operate:

• MATRIX_4x16—four 4 × 16, 2-wire matrixes

• MATRIX_4x32—two 4 × 32, 2-wire matrixes

• MATRIX_4x64—one 4 × 64, 2-wire matrix

• MATRIX_8x16—two 8 × 16, 2-wire matrixes

• MATRIX_8x32—one 8 × 32, 2-wire matrix

• MATRIX_16x16—one 16 × 16, 2-wire matrix

For example, to configure the SCXI-1129 in the 4 × 64 topology, the
instrument descriptor is:

SCXIn::m::MATRIX_4x64

where

n = chassis ID

m = module slot number

You can also use MATRIX as an instrument descriptor. If you use
MATRIX, NI-SWITCH picks a topology based on the terminal block you
configured in MAX. Refer to Table 6-1.

Table 6-1. Mapped Topologies in MAX

Terminal Block Matrix Topology

SCXI-1333 MATRIX_4x16

SCXI-1334 MATRIX_4x64

SCXI-1335 MATRIX_8x32

SCXI-1336 MATRIX_16x16

SCXI-1337 MATRIX_8x16

SCXI-1339 MATRIX_4x32

Chapter 6 Using NI-SWITCH with SCXI

NI-SWITCH Software User Manual 6-18 ni.com

Note If you specify MATRIX as the instrument descriptor and do not configure a specific
terminal block in MAX, then the SCXI-1129 defaults to the MATRIX_4x16 topology.

Any of the instrument descriptors allows you to perform the following
operations on the SCXI-1129:

• Route signals with the connect/disconnect functions

• Scan a list of channels

• Manually control individual switches

The analog bus relays are not automatically connected when configuring
the SCXI-1129 in any of the above mentioned topology.

Routing Signals
Using the SCXI-1129, you can route signals in any one of six
configurations: MATRIX_4x16, MATRIX_4x32, MATRIX_4x64,
MATRIX_8x16, MATRIX_8x32, or MATRIX_16x16.

For example, calling Connect with channel 1 set to B4R3 and channel 2
set to B4C3 routes signals from row 3 of bank 4 to column 3 of bank 4. For
more information about matrix topologies, refer to the SCXI-1129 User
Manual.

Scanning a List of Channels
You can scan through a list of channels on the SCXI-1129 by specifying
the triggering information and a scan list. The instrument descriptor does
not change when scanning on the SCXI-1129. For example, you can use
MATRIX_4x16 to route channels and scan on the SCXI-1129. Refer to
Chapter 5, Scanning, for a description of scanning in general and the scan
list syntax.

Analog Bus Configuration for Scanning
The analog bus channels are not automatically connected to the HVAB on
the SCXI-1129. Connecting the analog bus channels enables a DMM that
is cabled to the HVAB to take measurements. To close the analog bus
channels, you can specify the analog bus as part of the scan list. For
example, a scan list entry of r0->com0 && com0->ab0; connects row 0
to analog bus 0. You can also close the analog bus channels by calling
Connect with the channel 1 set to com0 and channel 2 set to ab0.

Note If the analog bus relays are closed during a scan, they remain closed until Abort
Scan is called.

Chapter 6 Using NI-SWITCH with SCXI

© National Instruments Corporation 6-19 NI-SWITCH Software User Manual

Manual Control of Switches
You can use SingleSwitchControl to individually control the switches
on the SCXI-1129. Refer to the SCXI-1129 User Manual for the switch
names used in this function.

If you are doing manual switch control, use MATRIX_4×16 for the
instrument descriptor.

Scanning a Non-Cabled SCXI Module
A cabled SCXI module has the measurement device, a DMM for example,
directly connected to it. To scan a module indirectly connected to a
measurement device (the non-cabled module), the cabled module has to
route the trigger signals from the measurement device to the non-cabled
SCXI module. The cabled module routes the input triggers to one of the
trigger lines (ttl lines) on the SCXI backplane and the non-cabled module
picks up the input triggers from these ttl lines. You can select the ttl line
that the cabled module routes the triggers to by setting the Cabled Module
Trigger Bus attribute.

The Cabled Module Scan Advanced Bus can also be used while scanning a
non cabled SCXI module. This attribute selects the ttl line that the
non-cabled module sends its scan advanced to. The scan advanced is then
routed from the ttl line to the measurement device by the cabled module.

NI-SWITCH checks the Trigger Input attribute, Scan Advanced attribute
and Measurement & Automation Explorer (MAX) to determine the cabled
module.

Example 6-1 Scanning
This example illustrates how the Cabled Module Trig Bus and Cabled
Module Scan Advanced Bus work.

If your SCXI chassis has an SCXI-1129 in slot 3 and another SCXI-1129
in slot 4 connected to a DMM through the Front Connector.

If you want to perform handshaking with the non-cabled SCXI-1129
(in slot 3), you have to set the Trigger Input and Scan Advanced attribute
(for the module in slot 3) to be the Front Connector of Module 4. If you set
the Cabled Module Trigger Bus to ttl5 and Scan Advanced Trig Bus to be
ttl6, the cabled SCXI-1129 in slot 4 routes the input triggers from the DMM
to ttl5 and routes the scanner advanced from ttl6 to the DMM. By setting

Chapter 6 Using NI-SWITCH with SCXI

NI-SWITCH Software User Manual 6-20 ni.com

these two attributes, the SCXI-1129 in slot 3 receives its triggers from ttl5
and sends scanner advanced to ttl6.

Note Not all SCXI modules that support scanning can route to all trigger lines on the
SCXI backplane. Currently only SCXI-1129 can route to all trigger lines. SCXI-1127 and
SCXI-1128 can route input triggers to ttl0 and route scanner advanced from ttl2. Not all
triggers lines are supported in all chassis. Make sure that the correct chassis is chosen for
your particular application.

© National Instruments Corporation A-1 NI-SWITCH Software User Manual

A
Microsoft Visual Basic
Examples

This appendix shows the Visual Basic syntax of the ANSI C examples
given earlier in this manual. The examples use the same numbering
sequence for easy reference.

Example 3-1
Private Sub vbMain()

Dim instr as ViSession 'Communication Channel

Dim status as ViStatus 'For checking errors

Dim firmRev as Vichar * 256 'Strings for revision info

Dim driverRev as Vichar * 256

Rem Begin by opening a communication channel to the instrument

status = niSwitch_init("PXI0::16::INSTR", VI_TRUE, VI_TRUE, instr)

if (status < VI_SUCCESS) Then

Rem Error initializing interface ... exiting

Exit Sub

End If

REM NOTE: For simplicity we will not show any other error checking

REM Get the revision of the driver

status = niSwitch_revision_query(instr, driverRev, firmRev)

REM Close communication channel

status = niSwitch_close(instr)

End Sub

Appendix A Microsoft Visual Basic Examples

NI-SWITCH Software User Manual A-2 ni.com

Example 3-2
Private Sub vbMain()

Dim instr As ViSession 'REM Communication Channel

Dim status As ViStatus 'REM For checking errors

Rem Begin by opening a communication channel to the instrument

status = niSwitch_init("PXI0::16::INSTR", VI_TRUE, VI_TRUE, instr)

if (status < VI_SUCCEESS) Then

Rem Error initializing interface ... exiting

Exit Sub

End If

REM NOTE: For simplicity we will not show any other error checking

REM Disconnect Channel 0 from the common (open the switch)

status = niSwitch_Disconnect(instr, "com0", "ch0")

REM Connect Channel 16 to the common (close the switch)

status = niSwitch_Connect(instr, "com16", "ch16")

REM Close communication channel

status = niSwitch_close(instr)

End Sub

Appendix A Microsoft Visual Basic Examples

© National Instruments Corporation A-3 NI-SWITCH Software User Manual

Example 3-3
Private Sub vbMain()

Dim instr As ViSession 'Communication Channel

Dim status As ViStatus 'For checking errors

Rem Begin by opening a communication channel to the instrument

status = niSwitch_init("PXI0::16::INSTR", VI_TRUE, VI_TRUE, instr)

if (status < VI_SUCCESS) Then

Rem Error initializing interface ... exiting

Exit Sub

End If

REM NOTE: For simplicity we will not show any other error checking

REM Close switch #0

status = niSwitch_Connect(instr, "com0", "ch0")

status = niSwitch_WaitForDebounce(instr, 1000)

REM INSERT CODE TO MAKE READING

REM Open switch #0

status = niSwitch_Disconnect(instr, "com0", "ch0")

REM Close switch #1

status = niSwitch_Connect(instr, "com0", "ch1")

status = niSwitch_WaitForDebounce(instr, 1000)

REM INSERT CODE TO MAKE READING

REM Close communication channel

status = niSwitch_close(instr)

End Sub

Appendix A Microsoft Visual Basic Examples

NI-SWITCH Software User Manual A-4 ni.com

Example 3-4
Private Sub vbMain()

Dim instr As ViSession 'Communication Channel

Dim status As ViStatus 'For checking errors

Rem Begin by opening a communication channel to the instrument

status = niSwitch_init("PXI0::16::INSTR", VI_TRUE, VI_TRUE, instr)

if (status < VI_SUCCESS) Then

Rem Error initializing interface ... exiting

Exit Sub

End If

REM NOTE: For simplicity we will not show any other error checking

REM Connect the Matrix Point (row=0, col=0)

status = niSwitch_Connect(instr, "r0", "c0")

REM Connect the Matrix Point (row=3, col=4)

status = niSwitch_Connect(instr, "r3", "c4")

REM Disconnect the Matrix Point (row=0, col=0)

status = niSwitch_Disconnect(instr, "r0", "c0")

REM Close communication channel

status = niSwitch_close(instr)

End Sub

Appendix A Microsoft Visual Basic Examples

© National Instruments Corporation A-5 NI-SWITCH Software User Manual

Example 3-5
Private Sub vbMain()

Dim instr As ViSession 'Communication Channel

Dim status As ViStatus 'For checking errors

Rem Begin by opening a communication channel to the instrument

status = niSwitch_init("PXI0::16::INSTR", VI_TRUE, VI_TRUE, instr)

if (status < VISUCCESS) Then

Rem Error initializing interface ... exiting

Exit Sub

End If

REM NOTE: For simplicity we will not show any other error checking

REM Turn off Continuous mode. We want a one-shot scan

status = niSwitch_SetContinuousScan(instr, VI_FALSE)

REM CONFIGURE THE DMM TO TAKE 16 READINGS AND WAIT FOR A

REM TRIGGER BEFORE STARTING EACH READING. ALSO

REM ASSERT A TRIGGER AFTER EACH READING

REM Now scan...

status = niSwitch_Scan(instr,

"com0->ch0:15;",NISWITCH_VAL_SWITCH_INITIATED);

/* Wait for Scan to complete */

status = niSwitch_WaitForScanComplete(instr, 5000)

/* DOWNLOAD DATA FROM DMM */

REM DOWNLOAD DATA FROM DMM

REM Close communication channel

status = niSwitch_close(instr)

End Sub

Appendix A Microsoft Visual Basic Examples

NI-SWITCH Software User Manual A-6 ni.com

Example 5-1
Private Sub vbMain()

Dim DMMinstr as ViSession 'Communication Channel

Dim SWITCHinstr as ViSession 'Communication Channel

REM DMM Variables

Dim dmmRange as ViReal64 ' 0.2 Volt Range

Dim triggerDelay as ViReal64 ' No Trigger Delay

Dim handInit as ViBoolean ' DMM Initiates Acquistion

Dim numOfMeas as ViInt32 ' Number of Points to Take

Dim measurements as ViReal64 * 24' Array for Data

Dim status as ViStatus

REM Initialize DMM variables

triggerDelay = 0.0

handInit = 0

numOfMeas = 24

Rem Begin by opening a communication channel to the instrument

status = niSwitch_init("PXI0::16::INSTR", VI_TRUE, VI_TRUE,

SWITCHinstr)

if (status < VI_SUCCESS) Then

Rem Error initializing interface ... exiting

Exit Sub

End If

status = niDMM_init ("DAQ::1::INSTR", VI_TRUE, VI_TRUE, DMMinstr)

if (status < VI_SUCCESS) Then

REM Error Initializing Interface...exiting

niSwitch_close(SWITCHinstr)

return -1;

REM NOTE: For simplicity we will not show any other error checking

REM Start by configuring the handshake lines

REM In this case, we are using TTL0 and 1 for triggers

REM for the PXI switches

Appendix A Microsoft Visual Basic Examples

© National Instruments Corporation A-7 NI-SWITCH Software User Manual

status = niSwitch_ConfigureScanTrigger(SWITCHinstr, 0.0,

NISWITCH_VAL_TTL0,

NISWITCH_VAL_TTL1)

REM Provide the list of channels to scan

status = niSwitch_Scan(SWITCHinstr, "com0->ch0:23;",

NISWITCH_VAL_DMM_INITIATED)

REM CONFIGURE THE DMM TO TAKE 24 READINGS AND WAIT FOR A

REM TRIGGER ON TTL1 BEFORE STARTING EACH READING. ALSO

REM ASSERT A TRIGGER ON TLL0 AFTER EACH READING.

status = niDMM_AdvancedAcquisition (DMMinstr,

 NIDMM_VAL_60_HERTZ,

 NIDMM_VAL_DC_VOLTS,

 dmmRange,

 NIDMM_VAL_TTL0,

 NIDMM_VAL_TTL1,

 triggerDelay,

 handInit,

 numOfMeas,

 measurements)

REM Close communication channel

status = niSwitch_close(SWITCHinstr)

status = niDMM_close(DMMinstr)

End Sub

© National Instruments Corporation B-1 NI-SWITCH Software User Manual

B
Scanning Multiple Devices

This appendix covers the unique features that affect scanning when you
have multiple switch devices wired together to act as one large switch.

Multiple device scanning is handled differently on different switch devices.
Please refer to the section appropriate to the switch device you are using.

Multiple Device Scanning Using PXI Switches
For example, if you wire together the analog bus connections of multiple
NI 2501 switch devices, you can have n times 24 channels, where n is the
number of switch devices wired together. However,in the software, these
devices are still unique switch devices with their own unique addresses.
To scan in these situations, you need to:

1. Count triggers in the various scan lists.

2. Set up timing information.

3. Configure triggers.

Since the analog bus of multiple switch devices is wired together, setting up
timing information is very critical. When scanning two devices, you need
to make sure that device 1 disconnects from the analog bus before device 2
connects to the analog bus. Because of this constraint <sa none> must be
used in the scan list. <sa none> allows you to delay device 2 until device
1 has disconnected from the analog bus. The usage of <sa none> is
explained in the example below.

The NI 2501 is a 24-channel FET multiplexer that supports the analog bus
connections through the PXI terminal block or terminal-block wiring. In
this example, assume you have three NI 2501 devices wired together to
create a 72-channel FET multiplexer. If you are scanning in Break Before
Make and wanted to do a simple scan of all three devices in order, the scan
lists for each device would be as follows:

Device #1: <sa none> ab0->ch0:23; <repeat 24>; <repeat 24>;

Device #2: <repeat 24>; <sa none> ab0->ch0:23; <repeat 24>;

Device #3: <repeat 24>; <repeat 24>; <sa none> ab0->ch0:23;

Appendix B Scanning Multiple Devices

NI-SWITCH Software User Manual B-2 ni.com

The number 24 in the repeat command is the exact number of channels
scanned by the other devices. The previous example used two repeat

command words to make this clear. However, you can combin the two
command words.

Note This example shows direct connections from the input channels to the analog bus.
Refer to the Analog Bus section in Chapter 4, Manually Controlling Switches, to see how
this is done.

To make sure the scan starts properly, call either niSwitch_Scan
(niSwitch Scan.vi)or niSwitch_Initiate Scan (niSwitch Initiate
Scan.vi), beginning with the switch devices that do not have any switch
activity in the first element of the scan list—that is, device 3, then device 2,
and then device 1. This way, the final call causes the switch to close, and
subsequently causes the trigger that starts off the handshake.

Switch Timing
<sa none> can be used to add delay in the scan and is equivalent to wait
for delay. In the above scan list, device 2 will wait for a programmable
delay before connecting to the analog bus. The programmable delay for a
device should be set to the debounce time of the previous device in the scan.
This delay ensures that device 1 has disconnected from the analog bus. A
simpler, but not very efficient way, is to change the delays to the worst case
of all the switch devices. Device 1 scan list has <sa none> associated with
it because if you were the doing a continuous scan, device 1 will have to
wait until device 3 disconnects from the analog bus. The relevant attribute
for setting the delay is Settling Time.

Note In the above example, the analog bus was the common channel between the modules
involved in the scan. Depending on the application, the common channel between the
devices could change. For example, you could connect a row of two matrix switch devices
together where the row becomes the common channel. If you are scanning two devices
(device 1 and device 2) make sure that the first channel device 1 disconnects from is the
common channel.

The Trigger Configuration section explains how trigger routing is done
while scanning multiple devices.

Warning A multiple device scanning system with incorrect delays can result in damage to
the system or personal injury.

Appendix B Scanning Multiple Devices

© National Instruments Corporation B-3 NI-SWITCH Software User Manual

Multiple Device Scanning (Chain Triggering)
In this scanning mode, a switch device being scanned sends a trigger signal
to the following switch device after it finishes executing its scan list. Since
the analog bus of multiple switch devices will be wired together, setting up
timing is very critical. While scanning two devices you need to make sure
that device 1 disconnects from the analog bus before device 2 connects to
the analog bus. The ability of switch devices to send triggers to particular
trigger lines on the backplane is very useful in setting up the timing of the
scan. Use <sa ttlx> to send a trigger and <wft ttlx> to receive a
trigger, where x is one of the trigger lines on the backplane.

Note Currently only SCXI-1129 has the ability to send triggers on particular trigger lines.

Consider two SCXI-1129 devices in 4 x 64 mode. SCXI-1129 can be
configured in various matrix configurations. Closing the analog bus relays
creates a 4 x 128 matrix. If you are scanning in Break Before Make and
want to do a simple scan of the two devices, the scan lists for each device
could be as follows:

Device #1: ab0->r0 & r0->c0 & r0->c1; <sa ttl1> <wft ttl2>

Device #2: <wft ttl1> ab0->r0 & r0->c0 & r0->c1;<sa ttl2>

Note This example shows direct connections from the input channels to the analog bus.
Refer to the Analog Bus section in Chapter 4, Manually Controlling Switches, to see how
this is done.

In the above scan list, device 1 sends a trigger on TTL1 (<sa ttl1>) after
disconnecting from the analog bus. Device 2 waits for this trigger (<wft
ttl1> before it starts its scan. By having device 1 trigger device 2, you can
be sure that device 1 has disconnected from the analog bus before device 2
connects to the analog bus.

<sa ttl1> in device 2 scan list and <wft ttl1> in device 1 scan list
enables continuous scanning.

Multiple Device Scanning using SCXI - 1127/1128
Scanning of multiple devices using SCXI-1127 and SCXI-1128 is
explained in Chapter 6, Using NI-SWITCH with SCXI.

Appendix B Scanning Multiple Devices

NI-SWITCH Software User Manual B-4 ni.com

Trigger Configuration
The final consideration when performing multiple device scanning is the
trigger mapping. When a scan involves only a single switch device and a
measurement device, the handshake triggers are simply point-to-point.
However, when working with multiple switch devices, you must ensure that
all boards can participate in the scan and can access the triggers. If the
measurement and switch devices are all in the same system—such as a PXI
digital multimeter (DMM) and PXI switch—the trigger mapping remains
simple because the trigger lines of the chassis are all bused to each slot. In
these cases, the trigger input and output can be the same for each switch
device.

If you must use the front-panel triggers, the situation becomes more
complicated, though still manageable. NI-SWITCH handles this situation
through some more advanced triggering attributes.

The Trigger Mode attribute tells the device whether or not it is operating in
single, master, or slave mode. Refer to the NI-SWITCH C Reference Help
for a full description of this attribute.

If the mode for this attribute is set to single (NISWITCH_VAL_SINGLE),
you are using the switch device in a single-device scanning system and,
therefore, can use the configurations as described in Chapter 5, Scanning.
Master and slave modes are meant for device scanning.

The master switch device is the device to which the external triggers are
wired.

The master is responsible for propagating the triggers to the various slave
devices. You use two more attributes to arrange this:

• Master Slave Trigger Bus

• Master Slave Scan Advanced Bus

These attributes indicate which two backplane trigger lines to use to bus
triggers between the master and slave devices. For example, consider a
system with an external DMM and two PXI switch devices. The first switch
device is the master and uses TTL0 and TTL1 for trigger busing.

Appendix B Scanning Multiple Devices

© National Instruments Corporation B-5 NI-SWITCH Software User Manual

Figure B-1 illustrates this system.

Figure B-1. External Trigger System

In this case, the attributes for both the master and slave devices would be
set as shown in Table B-1.

You can set the Trigger Input and Scan Advanced Output attributes for the
slave devices to anything since the driver ignores them.

To continue the example described earlier, examine the difference if the
DMM is not external but rather is internal to the chassis and shares the same
trigger lines. In this case, the DMM should use matching trigger lines.

Table B-1. Master and Slave Device Attribute Settings for External Trigger System

Attribute Value

Trigger Input NISWITCH_VAL_EXTERNAL

Scan Advanced Output NISWITCH_VAL_EXTERNAL

Master Slave Trigger Bus NISWITCH_VAL_TTL0

Slave Master Scan Advanced Bus NISWITCH_VAL_TTL1

DMM

TTL1
TTL0

TRIG IN

VMC

EXT TRIGIN

Master Slave Slave

Switches

Scan
Advanced

Output

Appendix B Scanning Multiple Devices

NI-SWITCH Software User Manual B-6 ni.com

Figure B-2 illustrates this example.

Figure B-2. Internal Trigger System

For this example, the DMM should be configured as shown in Table B-2.

The master and slave devices would then be configured as shown in
Table B-3.

Table B-2. DMM Configuration for Internal Trigger System

Trigger Value

DMM Voltmeter Complete Trigger TTL0

DMM Trigger Input TTL1

Table B-3. Master and Slave Device Attribute Settings for Internal Trigger System

Attribute Value

Trigger Input NISWITCH_VAL_TTL0

Scan Advanced Output NISWITCH_VAL_TTL1

Master Slave Trigger Bus NISWITCH_VAL_TTL0

Slave Master Scan Advanced Bus NISWITCH_VAL_TTL1

TTL1
TTL0

MasterDMM Slave

Switches

© National Instruments Corporation C-1 NI-SWITCH Software User Manual

C
Common Names Table

The following table lists the common names for both the LabVIEW VIs
and C function calls that are used in this manual.

Table C-1. Common Names

Common Name LabVIEW VI Name C Function Call

Abort Scan niSwitch Abort Scan niSwitch_AbortScan

Close niSwitch Close niSwitch_close

Configure Scan List niSwitch Configure Scan
List

niSwitch_ConfigureScanList

Configure Scan
Trigger

niSwitch Configure Scan
Trigger

niSwitch_ConfigureScanTrigger

Connect niSwitch Connect Channels niSwitch_Connect

Disconnect niSwitch Disconnect
Channels

niSwitch_Disconnect

Disconnect All niSwitch Disconnect All
Channels

niSwitch_DisconnectAll

Error Message niSwitch Error Message niSwitch_ErrorMessage

Error Query niSwitch Error Query niSwitch_error_query

Initialize niSwitch Initialize niSwitch_init

Initialize With
Options

niSwitch Initialize With
Options

niSwitch_InitWithOptions

Initiate Scan niSwitch Initiate Scan niSwitch_InitiateScan

Is Debounced niSwitch Switch Is
Debounced?

niSwitch_IsDebounced

Is Scanning niSwitch Switch Is
Scanning?

niSwitch_IsScanning

Reset niSwitch Reset niSwitch_reset

Appendix C Common Names Table

NI-SWITCH Software User Manual C-2 ni.com

Revision Query niSwitch Revision Query niSwitch_revision_query

Scan niSwitch Scan niSwitch_Scan

Self Test niSwitch Self Test niSwitch_self_test

Send Software Trigger niSwitch Send Software
Trigger

niSwitch_SendSoftwareTrigger

Set Continuous Scan niSwitch Set Continuous
Scan

niSwitch_SetContinuousScan

Single Switch niSwitch Control A Single
Switch

niSwitch_SingleSwitchControl

Wait for Debounce niSwitch Wait for
Debounce

niSwitch_WaitForDebounce

Wait for Scan
Complete

niSwitch Wait For Scan To
Complete

niSwitch_WaitForScanToComplete

Table C-1. Common Names (Continued)

Common Name LabVIEW VI Name C Function Call

© National Instruments Corporation D-1 NI-SWITCH Software User Manual

D
Technical Support Resources

Web Support
National Instruments Web support is your first stop for help in solving
installation, configuration, and application problems and questions. Online
problem-solving and diagnostic resources include frequently asked
questions, knowledge bases, product-specific troubleshooting wizards,
manuals, drivers, software updates, and more. Web support is available
through the Technical Support section of ni.com

NI Developer Zone
The NI Developer Zone at ni.com/zone is the essential resource for
building measurement and automation systems. At the NI Developer Zone,
you can easily access the latest example programs, system configurators,
tutorials, technical news, as well as a community of developers ready to
share their own techniques.

Customer Education
National Instruments provides a number of alternatives to satisfy your
training needs, from self-paced tutorials, videos, and interactive CDs to
instructor-led hands-on courses at locations around the world. Visit the
Customer Education section of ni.com for online course schedules,
syllabi, training centers, and class registration.

System Integration
If you have time constraints, limited in-house technical resources, or other
dilemmas, you may prefer to employ consulting or system integration
services. You can rely on the expertise available through our worldwide
network of Alliance Program members. To find out more about our
Alliance system integration solutions, visit the System Integration section
of ni.com

Appendix D Technical Support Resources

NI-SWITCH Software User Manual D-2 ni.com

Worldwide Support
National Instruments has offices located around the world to help address
your support needs. You can access our branch office Web sites from the
Worldwide Offices section of ni.com. Branch office Web sites provide
up-to-date contact information, support phone numbers, e-mail addresses,
and current events.

If you have searched the technical support resources on our Web site and
still cannot find the answers you need, contact your local office or National
Instruments corporate. Phone numbers for our worldwide offices are listed
at the front of this manual.

© National Instruments Corporation G-1 NI-SWITCH Software User Manual

Glossary

Prefix Meanings Value

p- pico- 10–12

n- nano- 10–9

µ- micro- 10– 6

m- milli- 10–3

k- kilo- 103

M- mega- 106

G- giga- 109

t- tera- 1012

A

address string a string (or other language construct) that uniquely locates and identifies a
resource. VISA defines an ASCII-based grammar that associates strings
with particular physical devices and VISA resources.

API Application Programming Interface. The direct interface that an end user
sees when creating an application. In VISA, the API consists of the sum of
all of the operations, attributes, and events of each of the VISA resource
classes.

attribute a value within an object or resource that reflects a characteristic of its
operational state

B

breakpoint a specified point in program code where the program pauses to perform
some action; a breakpoint interrupt can be added to a scan list for
debugging or other special needs.

bus the group of conductors that interconnect individual circuitry in a computer.
Typically, a bus is the expansion vehicle to which I/O or other devices are
connected. Examples of PC buses are the ISA and PCI bus.

Glossary

NI-SWITCH Software User Manual G-2 ni.com

C

C Celsius

channel pin or wire lead to which you apply or from which you read the analog or
digital signal

common a channel that is typically the output of a switch module

communication
channel

the same as session. A communication path between a software element
and a resource.

contact bounce the intermittent switching that occurs when the movable metal parts of a
relay make or break contact

controller an entity that can control another device(s) or is in the process of
performing an operation on another device

D

debounced indicates when the contact bounce has ended. See contact bounce.

device an entity that receives commands from a controller. A device can be an
instrument, a computer (acting in a non-controller role), or a peripheral
(such as a plotter or printer).

digital multimeter a multifunction meter used to make measurements such as voltage, current,
resistance, frequency, temperature, and so on

DLL Dynamic Link Library. Same as a shared library or shared object. A
file containing a collection of functions that can be used by multiple
applications. This term is usually used for libraries on Windows platforms.

DMM See digital multimeter.

drivers/driver software software that controls a specific hardware device such as a switch device

E

external trigger a voltage pulse from an external source that triggers an event such as
A/D conversion. External typically means external from the chassis.

Glossary

© National Instruments Corporation G-3 NI-SWITCH Software User Manual

F

FET Field Effect Transistor

H

handshaking the use of two trigger lines between two instruments, such as a switch and
a DMM, to synchronize their actions

Hz hertz—the number of scans read or updates written per second

I

I/O input/output—the transfer of data to/from a computer system involving
communications channels, operator interface devices, and/or data
acquisition and control interfaces

instrument a device that accepts some form of stimulus to perform a designated task,
test, or measurement function. Two common forms of stimuli are message
passing and register reads and writes. Other forms include triggering or
varying forms of asynchronous control.

instrument driver a set of routines designed to control a specific instrument or family of
instruments, and any necessary related files for LabWindows/CVI or
LabVIEW

interface a generic term that applies to the connection between devices and
controllers. It includes the communication media and the device/controller
hardware necessary for cross-communication.

interrupt a condition that requires attention out of the normal flow of control of a
program

Interchangeable
Virtual Instruments

an advanced architecture for instrument drivers that includes features such
as simulation and state caching

ISA Industry Standard Architecture

IVI See Interchangeable Virtual Instruments.

Glossary

NI-SWITCH Software User Manual G-4 ni.com

L

latching relay a relay that maintains its state when power is removed

lock a state that prohibits sessions other than the session(s) owning the lock from
accessing a resource

M

master switch device the first switch device in a multi-device scan. It is responsible for passing
the triggers from the instrument to and from the slave switch device.

matrix superset of multiplexer; consists of connected rows and columns that
allows for a direct connection from any row to any column

multiplexer a switch module designed to take multiple input channels and allow the
user to select one channel as the output

N

NI-SWITCH an IVI-based instrument driver that supports the National Instruments line
of switch devices

non-latching relay a relay that requires constant power to maintain its state

O

operation an action defined by a resource that can be performed on a resource. In
general, this term is synonymous with the connotation of the word method
in object-oriented architectures. Also known as a function in C or a VI in
LabVIEW.

P

process an operating system element that shares a system’s resources. A
multi-process system is a computer system that allows multiple programs
to execute simultaneously, each in a separate process environment. A
single-process system is a computer system that allows only a single
program to execute at a given point in time.

Glossary

© National Instruments Corporation G-5 NI-SWITCH Software User Manual

property node a primitive in LabVIEW you can use to read or write attributes

PXI PCI with extensions for instrumentation

R

random scanning scanning the channels in a multiplexer in any order

relay a switch that connects or disconnects the signal to a common through the
physical movement of a metal arm

resource name See address string.

row and column another word for channel, used to describe the names of channels for a
matrix

S

s seconds

scan a sequence of channel connections typically controlled by triggers

scan advanced trigger the trigger generated by the switch device when scanning. The trigger
occurs after the switch device has closed a switch and the switch has settled.

scan list a list of channels supplied to NI-SWITCH that indicates the order in which
channels will be scanned

scanner See multiplexer.

SCXI Signal Conditioning eXtensions for Instrumentation—the National
Instruments product line for conditioning low-level signals within an
external chassis near sensors so only high-level signals are sent to DAQ
devices in the noisy PC environment

session the same as communication channel. A communication path between a
software element and a resource. Every communication channel in VISA is
unique.

settling time the amount of time required for a voltage to reach its final value within
specified limits. See debounced.

Glossary

NI-SWITCH Software User Manual G-6 ni.com

simulation mode a feature of the IVI architecture. A user can open a session to a simulated
switch module and develop code without having the switch module
physically present.

slave switch device the switch devices other than the master switch device in a multi-device
scan

soft front panel a graphical program included with NI-SWITCH that you can use to
interactively control the switch

state caching a feature of the IVI architecture. The driver can maintain the state of the
switch module in software to reduce unnecessary communication with the
switch module.

T

TBX Terminal Block Extension

terminal block an accessory containing wire connection points, typically screw terminals.

tree See multiplexer.

trigger any event that causes or starts some form of data capture

V

virtual instrument (1) a combination of hardware and/or software elements, typically used
with a computer, that has the functionality of a classic stand-alone
instrument; (2) a LabVIEW software module (VI), which consists of a
front-panel user interface and a block diagram program

VISA Virtual Instrument Software Architecture. This is the general name given
to this product and its associated architecture. The architecture consists of
two main VISA components: the VISA resource manager and the VISA
resources.

VXI VMEbus Extensions for Instrumentation

W

wire data path between nodes in LabVIEW

© National Instruments Corporation I-1 NI-SWITCH Software User Manual

Index

Symbols
; (semi-colon)

scanner advanced syntax, 5-9
wait for trigger syntax, 5-11

& (ampersand)
action separator syntax, 5-4
connection separator syntax, 5-3

&& (ampersands)
action separator syntax, 5-4
connector separator syntax, 5-3

~ (tilde), in scan list syntax, 5-2

A
action separator syntax, 5-4
ampersand (&)

action separator syntax, 5-4
connection separator syntax, 5-3

ampersands (&&)
action separator syntax, 5-4
connection separator syntax, 5-3

analog bus, 4-4 to 4-5
configuration

SCXI-1127/1128 scanning, 6-5
SCXI-1129 scanning, 6-18

connect channel 7 to analog bus block
diagram (figure), 4-5

connected to common (figure), 4-4
connecting, 4-4 to 4-5

API (Application Programming Interface)
overview. See NI-SWITCH software.

attributes, 2-6 to 2-8
accessing, 2-6 to 2-7
definition, 2-1
Get Active Channel Attribute Value block

diagram (figure), 2-6
master and slave devices, B-5 to B-6

operation attributes, 2-8
overview, 2-6
read-only state attributes, 2-7 to 2-8
Set Trigger Input Attribute block diagram

(figure), 2-7

B
basic scanning programming examples

C languages, 3-9 to 3-11
Microsoft Visual Basic, A-5 to A-7

basic startup programming examples
C languages, 3-2 to 3-3
Microsoft Visual Basic, A-1

break, removed from scan list syntax, 5-13
Break Before Make scan list

Scan Mode examples (table), 5-7
Scan Mode value, 5-6 to 5-7
wait for trigger examples (table), 5-12

C
C language. See also programming examples.

accessing attributes, 2-6 to 2-7
common names table, C-1 to C-2
using operations, 2-8 to 2-9

chain triggering, multiple device scanning, B-3
channels

common, 2-2
connecting, 1-2
connecting channel to common block

diagram (figure), 2-2
definition, 2-2
input and output, 2-2
matrix rows and columns, 1-3
scanning list of channels on

SCXI-1129, 6-18

Index

NI-SWITCH Software User Manual I-2 ni.com

SCXI-1127/1128 scanner mode
cold-junction temperature sensor

channel, 6-4 to 6-5
multiple random channels, 6-4
multiple sequential

channels, 6-3 to 6-4
single channel, 6-3

Close operation, 2-9
close switch examples. See connect and

disconnect programming examples.
cold-junction temperature sensor channel,

SCXI-1127/1128, 6-4
common, 2-2
common names table, C-1 to C-2
communicating with drivers. See session

communication.
connect action syntax, 5-2
connect and disconnect operations, 4-1 to 4-3

general-purpose switch
topologies, 4-1 to 4-2

matrices, 4-3
multiplexers, scanners and

trees, 4-2 to 4-3
connect and disconnect programming

examples
C languages, 3-4 to 3-5
Form A, B, and C switches (figure), 3-4
Microsoft Visual Basic, A-2

connection range syntax
examples (table), 5-7 to 5-8
overview, 5-7

connection separator syntax, 5-3
conventions used in manual, iv

D
disconnect action syntax, 5-2 to 5-3
Disconnect All operation, 4-4
drivers, custom installation, 1-3 to 1-4

E
Error Message operation, 2-9
Error Query operation, 2-9
examples. See programming examples.

G
general-purpose switch module, 2-3
general-purpose switch programming

examples
C languages, 3-4 to 3-5
Microsoft Visual Basic, A-2

general-purpose switch topologies, 4-1 to 4-2

H
handles, 2-1
helper operations, 2-6

I
independent mode,

SCXI-1127/1128, 6-8 to 6-9
initialization programming examples

C languages, 3-2 to 3-3
Microsoft Visual Basic, A-1

Initialize operation
block diagram, 2-4
purpose and use, 2-9
in session communication, 2-4 to 2-5

Initialize with Options operation, 2-4 to 2-5
input channels, 2-2
input trigger, changing polarity, 5-15
installing NI-SWITCH software, 1-3 to 1-4
Instrument Handle in block diagram

(figure), 2-5
IVI engine, 1-2
IVI Foundation, 1-2
IVI (interchangeable virtual instruments), 1-2

Index

© National Instruments Corporation I-3 NI-SWITCH Software User Manual

L
LabVIEW software

accessing attributes, 2-6 to 2-7
common names table, C-1 to C-2
using operations, 2-8 to 2-9

M
manual scanning programming examples

C languages, 3-6 to 3-8
Microsoft Visual Basic, A-3

manual switch control, 4-1 to 4-5
analog bus, 4-4 to 4-5
connect and disconnect, 4-1 to 4-3

general-purpose switch
topologies, 4-1 to 4-2

matrices, 4-3
multiplexers, scanners and

trees, 4-2 to 4-3
resetting, 4-4
SCXI-1129, 6-19

matrix
connect row and column block diagram

(figure), 2-3
rows and columns, 2-3
topology, 4-3

matrix mode, SCXI-1127 and
SCXI-1128, 6-7 to 6-8

matrix operation programming examples
C languages, 3-8 to 3-9
Microsoft Visual Basic, A-4

Microsoft Visual Basic. See also
programming examples.

accessing attributes, 2-6 to 2-7
using operations, 2-8 to 2-9

multiple device scanning, B-1 to B-6
chain triggering, B-3

trigger configuration, B-4 to B-6
attributes for master and slave

devices
external trigger system

(table), B-5
internal trigger system

(table), B-6
DMM configuration for internal

trigger system (table), B-6
external trigger system (figure), B-5
internal trigger system (figure), B-6

using PXI switches
programming considerations,

B-1 to B-2
switch timing, B-2

using SCXI-1127/1128, B-3
multiplexers

general-purpose switch module, 2-3
interchangeable with scanners and

trees, 4-2 to 4-3
programming examples

C languages, 3-6 to 3-8
Microsoft Visual Basic, A-3

simple multiplexer, 2-2

N
naming conventions

common names table, C-1 to C-2
conventions for LabVIEW VIs and

C-language function calls (note), 1-1
NI-SWITCH software, 2-1 to 2-9. See also

programming examples.
attributes, 2-6 to 2-8

accessing, 2-6 to 2-7
operation attributes, 2-8
overview, 2-6
read-only state attributes, 2-7 to 2-8

Index

NI-SWITCH Software User Manual I-4 ni.com

basis of
interchangeable virtual instruments

(IVI), 1-2
VXIplug&play, 1-2

installation, 1-3 to 1-4
operations, 2-8 to 2-9

overview, 2-8
required VXIplug&play

operations, 2-9
overview, 2-1 to 2-2
requirements for getting started, 1-2
session communication, 2-4 to 2-5
supported application development

environments, 1-3
switch overview, 2-2 to 2-3

general purpose switch module, 2-3
matrix, 2-3
simple multiplexer, 2-2

O
objects

sessions or handles, 2-1
verbs of the object, 2-1

open/close switch programming examples.
See connect and disconnect programming
examples.

operation attributes, 2-8
operations

definition, 2-1, 2-8
Error Query and Error Message, 2-9
helper operations, 2-6
Initialize and Close, 2-9
Reset, 2-9
Revision Query, 2-9
Self Test, 2-9
verbs of the object, 2-1
VXIplug&play required operations, 2-9

output channels, 2-2

P
Parsed Scan List, 5-13
polarity of input trigger and scan advanced,

changing, 5-15
programming examples, 3-1 to 3-11,

A-1 to A-7
basic scanning

C languages, 3-9 to 3-11
Microsoft Visual Basic, A-5 to A-7

basic startup
C languages, 3-2 to 3-3
Microsoft Visual Basic, A-1

conventions, 3-1
general-purpose switches

C languages, 3-4 to 3-5
Microsoft Visual Basic, A-2

initialization
C languages, 3-2 to 3-3
Microsoft Visual Basic, A-1

manual scanning
C languages, 3-6 to 3-8
Microsoft Visual Basic, A-3

matrix operations
C languages, 3-8 to 3-9
Microsoft Visual Basic, A-4

multiplexer
C languages, 3-6 to 3-8
Microsoft Visual Basic, A-3

open/close switch
C languages, 3-3 to 3-5
Microsoft Visual Basic, A-2

scan operations, 5-16 to 5-19
scanning non-cabled SCXI module,

6-19 to 6-20

Index

© National Instruments Corporation I-5 NI-SWITCH Software User Manual

R
read-only state attributes, 2-7 to 2-8
repeat syntax

description, 5-8
examples (table), 5-8

Reset operation, 2-9
resetting switch device, 4-4
Revision Query operation, 2-9
routing functions

combining with scanning, 5-16
SCXI-1127/1128 scanner mode,

6-6 to 6-7
routing signals, SCXI-1129, 6-18

S
scalable driver, 2-4
Scan Advanced Polarity, 5-15
scan advanced trigger, SCXI-1127/1128,

6-10 to 6-11
Scan Delay, 5-15
scan list

basic scan list example, 5-5 to 5-6
description, 5-5

scan list entry
description, 5-4 to 5-5
examples (table), 5-4

scan list string
definition, 5-2
preparing

advanced scan list syntax, 5-6 to 5-13
basic scan list syntax, 5-2 to 5-6

scan list syntax
advanced, 5-6 to 5-13

break, 5-13
connection range, 5-7 to 5-8
repeat, 5-8
Scan Mode, 5-6 to 5-7
scanner advanced, 5-9 to 5-10
wait for trigger, 5-11 to 5-13

basic, 5-2 to 5-6
action separator, 5-4
connect action, 5-2
connection separator, 5-3
disconnect action, 5-2 to 5-3
scan list, 5-5 to 5-6
scan list entry, 5-4 to 5-5
sequence separator, 5-3
switch action, 5-3

Scan Mode syntax, 5-6 to 5-7
Break Before Make examples (table), 5-7
Break Before Make value, 5-6 to 5-7

scan operations
overview, 5-16
programming example, 5-16 to 5-19

scanner advanced syntax, 5-9 to 5-10
description, 5-9
examples (table), 5-10
modules without support for (note), 5-9

scanner mode, SCXI-1127/1128, 6-2 to 6-7
analog bus configuration, 6-5
cold-junction temperature sensor channel,

6-4 to 6-5
multiple random channels, 6-4
multiple sequential channels, 6-3 to 6-4
programming considerations, 6-3 to 6-4
route functions, 6-6 to 6-7
single channel, 6-3

scanners, multiplexers and trees, 4-2 to 4-3
scanning, 5-1 to 5-19

basic scanning programming examples
C languages, 3-9 to 3-11
Microsoft Visual Basic, A-5 to A-7

changing polarity of input trigger and
scan advanced, 5-15

combining scanning and routing
functions, 5-16

configuring triggering options, 5-14
manual scanning programming examples

C languages, 3-6 to 3-8
Microsoft Visual Basic, A-3

Index

NI-SWITCH Software User Manual I-6 ni.com

multiple device scanning, B-1 to B-6
switch timing, B-2
trigger configuration, B-4 to B-6

non-cabled SCXI module, 6-19 to 6-20
overview, 5-1 to 5-2
Parsed Scan List, 5-13
preparing scan list string, 5-2 to 5-13
scan delay, 5-15
scan list syntax

advanced, 5-6 to 5-13
basic, 5-2 to 5-6

scan operations
overview, 5-16
programming example, 5-16 to 5-19

SCXI module, non-cabled, 6-19 to 6-20
SCXI-1127 and SCXI-1128 switch topologies,

6-1 to 6-11
independent mode, 6-8 to 6-9
matrix mode, 6-7 to 6-8
multiple device scanning, B-3
overview, 6-1 to 6-2
scanner mode, 6-2 to 6-7

analog bus configuration, 6-5
cold-junction temperature sensor

channel, 6-4 to 6-5
multiple random channels, 6-4
multiple sequential channels,

6-3 to 6-4
route functions, 6-6 to 6-7
single channel, 6-3

triggering, 6-9 to 6-11
scan advanced, 6-10 to 6-11
trigger input, 6-9 to 6-10

SCXI-1129 switch topologies, 6-17 to 6-19
analog bus configuration for

scanning, 6-18
manual control of switches, 6-19
mapped topologies in MAX (table), 6-17
MATRIX instrument descriptor,

6-17 to 6-18
new instrument descriptors, 6-17

routing signals, 6-18
scanning list of channels, 6-18

SCXI-1160 switch topologies, 6-12
SCXI-1161 switch topologies, 6-13
SCXI-1163R switch topologies, 6-13 to 6-14
SCXI-1190/1191 switch

topologies, 6-14 to 6-15
SCXI-1192 switch topologies, 6-16
Self Test operation, 2-9
semi-colon (;)

scanner advanced syntax, 5-9
wait for trigger syntax, 5-11

sequence separator syntax, 5-3
session communication, 2-4 to 2-5

Initialize block diagram (figure), 2-4
Initialize with Options block diagram

(figure), 2-4
Instrument Handle in application block

diagram (figure), 2-5
one session for each piece of hardware

(note), 2-5
sessions, defined, 2-1
startup programming examples

C languages, 3-2 to 3-3
Microsoft Visual Basic, A-1

switch action syntax, 5-3
switch overview, 2-2 to 2-3

general purpose switch module, 2-3
matrix, 2-3
simple multiplexer, 2-2

switch timing, multiple device scanning, B-2
switch topologies

general-purpose switch topologies,
4-1 to 4-2

matrices, 4-3
SCXI-1127 and SCXI-1128, 6-1 to 6-11
SCXI-1129, 6-17 to 6-19
SCXI-1160, SCXI-1161, and

SCXI-1163R, 6-12 to 6-14
SCXI-1190, SCXI-1191, SCXI-1192,

6-14 to 6-16

Index

© National Instruments Corporation I-7 NI-SWITCH Software User Manual

switches
controlling basic operation with operation

attributes, 2-8
manual switch control, 4-1 to 4-5

analog bus, 4-4 to 4-5
connect and disconnect

operation, 4-1 to 4-3
resetting, 4-4

querying with read-only state
attributes, 2-7 to 2-8

T
tilde (~), in scan list syntax, 5-2
topologies. See switch topologies.
trees, multiplexers and scanners, 4-2 to 4-3
trigger, waiting for. See wait for trigger syntax.
trigger configuration

multiple device scanning, B-4 to B-6
attributes for master and slave

devices
external trigger system

(table), B-5
internal trigger system

(table), B-6
external trigger system (figure), B-5
internal trigger system (figure), B-6

triggering options, 5-14

Trigger Input Polarity, 5-15
Trigger Input vs. Voltmeter Complete

(note), 3-9
triggering

chain triggering, multiple device
scanning, B-3

SCXI-1127/1128, 6-9 to 6-11
scan advanced, 6-10 to 6-11
trigger input, 6-9 to 6-10

V
verbs of the object, 2-1
Visual Basic. See Microsoft Visual Basic.
VXIplug&play

required operations, 2-9
standard for instrument drivers, 1-2

VXIplug&play System Alliance, 1-2

W
wait for trigger syntax, 5-11 to 5-13

Break Before Make examples
(table), 5-12

description, 5-11
examples (table), 5-11 to 5-12
text representations of trigger lines

(table), 5-12 to 5-13

	NI-SWITCH Software User Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Conventions
	Contents
	Chapter 1 Introduction
	Background
	VXIplug&play
	IVI

	Getting Started
	Installing the Software

	Chapter 2 API Overview
	Introduction
	Switch Overview
	Simple Multiplexer
	Figure 2-1. Connect Channel to Common Block Diagram

	Matrix
	Figure 2-2. Connect Row with Column Block Diagram

	General-Purpose Switch Module
	Figure 2-3. Connecting a General-Purpose Switch Module Block Diagram

	Using a Session for Communication
	Figure 2-4. Initialize Block Diagram
	Figure 2-5. Initialize With Options Block Diagram
	Figure 2-6. Use the Instrument Handle in Your Application Block Diagram

	Using Attributes
	Accessing Attributes in LabVIEW, C, and Visual Basic
	Figure 2-7. Get Active Channel Attribute Value Block Diagram
	Figure 2-8. Set Trigger Input Attribute Block Diagram

	Using the C Attributes for Querying and Controlling
	Using Read-Only State Attributes to Query the Switch Device
	Using Operation Attributes to Control Basic Operation of the Switch

	Using Operations in LabVIEW, C, and Visual Basic
	Overview of VXIplug&play Required Operations
	Initialize and Close
	Reset
	Self Test
	Error Query and Error Message
	Revision Query

	Chapter 3 Introductory Programming Examples
	Basic Startup
	Example 3-1. Initialization
	Figure 3-1. Initialize Example Block Diagram
	Discussion

	Open/Close Switch
	Figure 3-2. Form A, B, and C Switches
	Example 3-2. General-Purpose Switches
	Figure 3-3. General-Purpose Switches Block Diagram
	Discussion

	Manual Scanning
	Example 3-3. Multiplexer
	Figure 3-4. Multiplexer Control Block Diagram
	Discussion

	Matrix Operations
	Example 3-4. Matrix
	Figure 3-5. Matrix Mode Control Block Diagram
	Discussion

	Basic Scan
	Example 3-5. Scanning
	Figure 3-6. Scanning Switches with a DMM Block Diagram
	Discussion

	Chapter 4 Manually Controlling Switches
	Connect and Disconnect
	General-Purpose Switch Topologies
	Figure 4-1. Open/Close General-Purpose Switch Block Diagram

	Multiplexers, Scanners, and Trees
	Figure 4-2. Connect/Disconnect on a Multiplexer/Scanner Switch Block Diagram

	Matrixes
	Figure 4-3. Connect/Disconnect Channels in a Matrix Topology Block Diagram

	Reset
	Analog Bus
	Figure 4-4. Analog Bus Connected to Common
	Figure 4-5. Connect Channel 7 to Analog Bus Block Diagram

	Chapter 5 Scanning
	Overview
	Preparing a Scan List String
	Using Basic Scan List Syntax
	Connect Action
	Table 5-1. Connect Action Examples
	Disconnect Action
	Table 5-2. Disconnect Action Examples
	Switch Action
	Connection Separator
	Table 5-3. Connection Separator Example
	Sequence Separator
	Table 5-4. Sequence Separator Example
	Action Separator
	Scan List Entry
	Table 5-5. Scan List Entry Examples
	Scan List
	Table 5-6. Scan List Entry Examples

	Using Advanced Scan List Syntax
	Scan Mode
	Table 5-7. Examples of Break Before Make
	Connection Range
	Table 5-8. Examples of Connection Range
	Repeat
	Table 5-9. Repeat Examples
	Scanner Advanced
	Table 5-10. Scanner Advanced Examples
	Wait for Trigger
	Table 5-11. Wait for Trigger Examples
	Table 5-12. Wait for Trigger with Break Before Make Examples
	Table 5-13. Text Representations of Trigger Lines
	Break

	Parsed Scan List
	Configuring the Triggering Options
	Figure 5-1. Simple Two-Wire Handshake with DMM

	Changing the Polarity of the Input Trigger and Scan Advanced
	Using Scan Delay
	Combining Scanning and Routing Functions
	Scan Operations
	Example 5-2. Scan Operations and Programming Example
	Figure 5-2. Scanning the NI 2503 Using the NI 4060 DMM Block Diagram

	Chapter 6 Using NI-SWITCH with SCXI
	Switch Topologies for SCXI-1127 and SCXI-1128
	Scanner Mode
	Single Channel
	Multiple Sequential Channels
	Multiple Random Channels
	Cold-Junction Temperature Sensor Channel
	Analog Bus Configuration
	Route Functions

	Matrix Mode
	Independent Mode
	Triggering
	Trigger Input
	Scan Advanced

	Switch Topologies for the SCXI-1160, SCXI-1161, and�SCXI-1163R
	SCXI-1160
	SCXI-1161
	SCXI-1163R

	Switch Topologies for the SCXI-1190, SCXI-1191,�and�SCXI-1192
	SCXI-1190, SCXI-1191
	SCXI-1192

	Switch Topologies for the SCXI-1129
	Table 6�1. Mapped Topologies in MAX
	Routing Signals
	Scanning a List of Channels
	Analog Bus Configuration for Scanning
	Manual Control of Switches

	Scanning a Non-Cabled SCXI Module

	Appendix A Microsoft Visual Basic Examples
	Appendix B Scanning Multiple Devices
	Figure B-1. External Trigger System
	Table B-1. Master and Slave Device Attribute Settings for External Trigger System
	Figure B-2. Internal Trigger System
	Table B-2. DMM Configuration for Internal Trigger System
	Table B-3. Master and Slave Device Attribute Settings for Internal Trigger System

	Appendix C Common Names Table
	Table C-1. Common Names

	Appendix D Technical Support Resources
	Glossary
	A-B
	C-E
	F-I
	L-P
	R-S
	T-W

	Index
	Symbols
	A-C
	D-I
	L-N
	O-P
	R-S
	T-W

